
Sequence Requirements for Coiled-Coils: Analysis purified A-zip protein binds operator DNA 

with A Repressor-GCN4 Leucine Zipper Fusions at significantly lower concentrations than 
the NH2-terminal domain (10). These re- 
sults, coupled with the activity measure- 

JAMES C. Hu, ERIN K. O'SHEA, PETER S. KIM, ROBERT T. SAUER ments in vivo, provide strong evidence that 
the leucine zipper portion of the fusion 

A genetic system was developed in Eschevichia coli t o  study leucine zippers with the 
amino-terminal domain of bacteriophage X repressor as a reporter for dimerization. 
This system was used to  analyze the importance of the amino acid side chains at  eight 
positions that form the hydrophobic interface of the leucine zipper dimer from the 
yeast transcriptional activator, GCN4. When single amino acid substitutions were 
analyzed, most functional variants contained hydrophobic residues at the dimer 
interface, while most nonfunctional sequence variants contained strongly polar or  
helix-breaking residues. In multiple randomization experiments, however, many 

protein mediates improved dimerization 
and, therefore, improved operator binding. 

The leucine zipper portion of A-zip 
should be a-helical. Circular dichroism spec- 
troscopy (Fig. 1A) showed that A-zip gave a 
substantially stronger helical signal than the 
isolated NH2-terminal domain at the same 
concentration. The difference spectrum 
(Fig. 1B) is characteristic of an a-helix, and 

combinations-of hydrophobic residues were found to  be nonfunctional, and leucines in the- magnitude of the difference signal is 
the heptad repeat were shown to  have a special function in leucine zipper dimerization. consistent with complete helix formation by 

the leucine zipper region of A-zip (1 1). 

L EUCINE ZIPPERS WERE FIRST NOT- cells that contained either A-zip or intact A The sequence of the GCN4 leicine zipper 
ed as a sequence motif in several repressor were immune to superinfection by and two cartoon views of the dimer, assum- 
eukaryotic transcription factors (1) A and showed efficient repression of the ing a parallel coiled-coil model, are shown 

and subsequently shown td  form dimers that 
consisted of a pair of parallel a-helices in a 
coiled coil (2). The importance of the leu- 
cines, which are spaced every seven amino 
acid residues over a stretch of four or five 
seven-residue repeats, has been probed in 
several studies (3, 4), but extensive genetic 
analysis has been difficult in many of the 
eukaryotic systems in which leucine zippers 
function. The NH-terminal DNA-binding 
domain of bacteriophage A repressor dimer- 
izes inefficiently and requires a separate 
COOH-terminal dimerization domain to 
bind strongly to its operator ( 5 ) .  We show 
here that fusion of the NH2-terminal do- 
main of A repressor to the GCN4 leucine 
zipper results in a stable, biologically active 
dimer, thereby allowing efficient genetic 
analysis of leucine zipper function in E,  coli. 

The chimeric protein, designated A-zip, 
contains the DNA-binding domain and 
linker region of A repressor fused to the 
leucine zipper (amino acids 250 to 281) 
from the yeast transcription factor, GCN4. 
Different regulatory properties were ob- 
served when the isolated DNA-binding do- 
main, the A-zip chimera, or intact A repres- 
sor were expressed at low concentrations 
from equivalent plasmid constructions in 
vivo (Table 1) ( 6 ) .  Bacterial cells that con- 
tained the DNA-binding domain alone were 
sensitive to A superinfection and showed 
only modest repression of p-galactosidase 
expression from a AP,-lacZ fusion, while 

AP,-larZ fusion. Thus, fusidn of the leucine 
zipper sequence to the DNA-binding do- 
main of A repressor provided a phenotype 
that can be exploited in genetic studies: that 
is, only those leucine zipper sequences that 
mediate efficient dimerization of the chimer- 
ic protein in vivo should permit the host cell 
to survive superinfection by A phage. 

Purified A-zip protein (7) is predominant- 
ly dimeric in vitro at micromolar concentra- 
tions, as judged by gel filtration (8) or 
crosslinking (9) experiments. In addition, 

(Fig. 2) (2, 12). Each heptad repeat contrib- 
utes two turns of helix, with individual 
positions in each heptad designated by the 
letters a through g. Leucine is usually found 
at position d (this repeat defines the leucine 
zipper motif) and valine is most common at 
position a, resulting in a generally hydro- 
phobic dimer interface. To investigate the 
sequence requirements for leucine zipper 
function, the central eight a and d positions 
in the A-zip gene were individually random- 
ized by cassette mutagenesis (13), and trans- 

Table 1. Regulatory properties of wild-type and chimeric proteins in vivo. 

Repression of APn-lac2 
Sensitivity 

Strain (plasmid) Repressor to A KH54 
@-gal units % 

repressiona 

JH372 (pZ150) None Sensitive 1247 0 
JH372 (pKH101) 1-102 Sensitive 849 32 
JH372 (pJH157) indl Immune 140 89 
JH372 (pJH370) A-zip Immune 139 89 

"Repression is calculated as: P-gal with repressor 
with no repressor 
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Fla. 2. The leucine ziooer of A - =  - 
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( 2 ) .  (A) Sequence of the GCN4 a a o a d a d a d 

leucine zipp;r. The a and d posi- 
tions that form the core of the 
dimer interface are shown in out- 
line. (B) Side-view depiction of B c 
parallel a-helices in the leucine 
zipper dimer. The a (stippled) 
and d (black) positions in the 
dimer interface that have been 
studied here are indicated. (C) 
End view of structure shown in 
(B). Positions around the helical 
wheel are labeled a through g. 
The d position, which is usually leucine, is shown in black. 

formants were scored for immunity to phage 
A at 30, 37, and 42°C. Transformants were 
scored as functional if they were immune at 
all temperatures, conditional if they were 
immune at some temperatures, and non- 
functional if they were killed at all three 
temperatures. The A-zip genes from all three 
classes were sequenced, and clones with 
nonsense mutations, deletions, or additional 
mutations were discarded. In all, 60 func- 
tional, 23 conditional, and 53 nonhnctional 
sequences were suitable for further analysis 
(Table 2A). From 11 to 16 substitutions 
were recovered at each position. 

Considering substitutions at all eight a 
and d dimer interface positions as a whole, 
clear residue preferences were evident (Table 
2B). In the nonfunctional class, most of the 
substitutions introduced strongly polar res- 
idues or helix-breaking residues. By con- 
trast, the majority of residues in the hnc-  
tional class were aliphatic or aromatic 
hydrophobic amino acids. There were no 
helix-breaking residues among the hnction- 
a1 class, and only 15% of the substitutions 
were strongly polar. Comparing the posi- 
tions in the heptad repeat, the d positions 
were more restricted than the a positions; 
strongly polar residues were not found at 
any of the d positions, but were allowed at 
three of the four a positions. The N16 a 
position is of particular interest, as the wild- 
type Asn is the only polar residue in the core 
of the GCN4 dimer interface and is con- 
served in several other leucine zipper pro- 
teins. Nevertheless, fbnctional substitutions 
at position 16 included a spectrum of di- 
verse amino acids, suggesting that a special 
function for this residue, if any exists, was 
not necessary for dimerization in the A-zip 
chimera. Among the individual a positions, 
V23 was the least tolerant, being restricted 
to hydrophobic amino acids. Differences in 
tolerance to particular substitutions were 
also evident at individual d positions. For 
example, threonine was hlly functional at 
L5, conditionally functional at L19, and 
nonfunctional at L26. Similarly, tryptophan 
was hnctional at L5, conditional at L12, 

and nonhnctional at L26. 
All of the leucines at the d positions can 

be individually substituted by other hydro- 
phobic residues. This raises the following 
question: do leucines in the leucine repeat 
have a special hnction in the zipper or do 
they simply reflect the homology criteria by 
which potential zipper-containing proteins 
are selected from a sequence database? To 
address this question, we randomized the 
four d positions simultaneously, but limited 
substitutions to the five hydrophobic resi- 
dues, Phe, Leu, Ile, Met, and Val (14). 
Unselected transformants were picked, se- 
quenced, and tested for function. Of the 17  
functional sequences recovered, 16 con- 
tained three or more leucines (Fig. 3A), 

Table 2. Results of single position mutagenesis 

suggesting that leucine does indeed have a 
critical function in the leucine zipper. The 
statistical significance of this finding was 
tested by comparing the observed and ex- 
pected recovery (15) of amino acids at the 
four positions. At individual positions 
among the combinatorially randomized 
functional sequences, Leu was recovered 
more frequently than expected by chance [2 
to 4 standard deviations (u); Fig. 3B], while 
Phe, Ile, Met, and Val were recovered less 
frequently than expected (0  to -1.5 a; Fig. 
3B). By contrast, among the nonfunctional 
sequences, Leu was under-represented, 
while the other residues were genekilly over- 
represented. 

Thus, although leucine is not absolutely 
required at any of the d positions in the 
GCN4 leucine zipper (Table 2) (16), a hy- 
drophobic interface per se is not sufficient to 
encode a functional leucine zipper. At least 
two and generally three of these four d 
positions require leucine in the context of 
the GCN4 leucine zipper. This same point 
can be made by noting that the nonhnc- 
tional combinatorial mutants (Fig. 3A) in- 
cluded sequences that were combinations of 
hnctional single substitutions. For example, 
although the sequences with the single mu- 
tations LV5, LM12, and L119 were func- 
tional, the double mutants LV5-LM12 and 
LM12-LI19 were nonhnctional. Leucines 

(A) Sequence changes and associated phenotypes. 

Residue Position Functional Conditional Nonfunctional 

( 8 )  Distribution ofresidue types among activity classes 

Class Amino acids Functional Conditional Nonfunctional 

Aliphatic F, 1, L, M, 62% (33) 20% (4) 3% (1) 
and aromatic V, W, y 

Neutral A, C, S, T 23% (12) 30% (6) 7% (2) 
Charged and E, D, H, K, 15% (8) 45% (9) 59% (17) 

strongly polar N, Q, R 
Helix breaking G, P 0% (0) 5% (1) 31% (9) 

- - - ~p -- -~ 

11 = number in parentheses. Abbreviations for the amino acid residues are A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, 
Gly; H,  His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T,  Thr; V, Val; W, Trp; and Y, 
Tyr. 
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at positions 19 and 26 of the GCN4 leucine 
zipper appeared to be especially important. 
These positions were the most restricted in 
single randomization experiments (Table 2) 
and were the most biased toward leucine in 
combinatorial experiments (Fig. 3).  Differ- 
ences in the patterns of allowed substitu- 
tions at individual leucine positions have 
also been reported for other-leucine zipper 
proteins (3, 4).  

Functional Nonfunctional 
L5 L12 L19 L26 n L5 L12 L19 L26 n 
L L L L (3) L L V V  
V L L L (3) L V L M  
F L L L (3) L F F L  
L V L L 13) L M l L  

\ , 
L F L L  L V M L  
L L l L  
L L L l  
L L L M  
I I L L  

I L L F  
F L v L (2) 
M L l L  
M L V L  
V L M L  
V M L L  
F F L L  

Conditional 
L X X X (7) 

L5 L12 L19 L26 n X L X X (31 

-5 
Phe Ile Leu Met Val 

Fig. 3. Combinatorial randomization of d posi- 
tions 5, 12, 19, and 26. (A) Sequences of variants 
obtained following randomization to allow only 
the five hydrophobic residues, Phe, Ile, Leu, Met, 
and Val, sorted by activity. Each line shows the 
amino acids found at positions 5, 12, 19, and 26 
in one sequence. The numbers in parentheses (n) 
indicate the number of times DNA sequences that 
encoded the same amino acid sequence were 
found. (B) Occurrence of each amino acid at each 
position in the functional (top) and nonfunctional 
(bottom) classes. Shown as the number of stan- 
dard deviations, Z, (15) away from the expected 
occurrence (IS), on the basis of all sequences 
recovered at that position: bars; closed, 5; 
hatched, 12; open, 19; and cross-hatched, 26. 

The system described here provides a con- 
venient and efficient method for genetic 

u 

analysis of large numbers of sequence vari- 
ants of the GCN4 leucine zipper. Biochem- 
ical and structural studies of such variants 
will be required to understand why some 
positions but not others in the dimer inter- 
face tolerate polar residues and why leucines 
have a special function in the formation of 
short coiled coils (17). Such studies should 
be possible because peptides that contain the 
wild-type GCN4 leucine zipper sequence 
form stable dimers (2), and the structure of 
this dimer has been studied both in solution 
by nuclear magnetic resonance (18) and in 
crystals (19). Chimeric systems of the type 
described here should also function with 
leucine zipper sequences other than GCN4 
and may be useful in studies of different 
kinds of dimerization motifs (20). Finally, 
proteins that form mixed dimers with a 
motif of interest should exert a "dominant 
negative" effect (21) on the ability of a 
chimeric protein to bind A operators. This 
effect could provide a simple way to select 
clones that express interacting factors from 
libraries based on phase A, since only those 
phage that express such a factor will form 
plaques on bacteria expressing a chimeric 
repressor. 
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Identification of a Specialized Adenylyl Cyclase That 
May Mediate Odorant Detection 

The mammalian olfactory system may transduce odorant information via a G protein- 
mediated adenosine 3',5'-monophosphate (CAMP) cascade. A newly discovered ade- 
nylyl cyclase, termed type 111, has been cloned, and its expression was localized to 
olfactory neurons. The type I11 protein resides in the sensory neuronal cilia, which 
project into the nasal lumen and are accessible to airborne odorants. The enzymatic 
activity of the type I11 adenylyl cyclase appears to differ from nonsensory cyclases. The 
large difference seen between basal and stimulated activity for the type I11 enzyme 
could allow considerable modulation of the intracellular CAMP concentration. This 
property may represent one mechanism of achieving sensitivity in odorant perception. 

T HE VERTEBRATE OLFACTORY SYSTEM 

detects chemical stimuli in the envi- 
ronment with remarkable specificity 

and sensitivity. Differences in molecular 
structure as subtle as stereochemical config- 
uration are discernible, and the threshold of 
sensitivity for some airborne odorants is in 
the range of parts per trillion (1). At least 
some odorants stimulate a guanosine tri- 
phosphate (GTP)Aependent increase in 
CAMP in the olfactory cilia, which are spe- 
cialized structures that project from the api- 
cal dendrites of the olfactory sensory neu- 
rons (2). Adenylyl cyclase activity, which is 
high in olfactory tissue, is enriched in these 
sensory neurons (2, 3 ) .  The neuronal cilia 
also have nonspecific cation channels, which 
open in response to increasing cyclic nucle- 
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otide concentrations (4). These results, tak- 
en together, suggest that olfactory signal 
transduction involves an odorant-stimulated 
second messenger cascade that leads to sen- 
sory neuron depolarization and initiation of 
an action potential. 

Several components of the odorant trans- 
duction pathway have evolved olfactory- 
specific variants. For example, the a subunit 
of Go,, which resembles the a subunit of the 
stimulatory G protein, G,, is found exclu- 
sively in olfactory neuronal cilia (5 ) .  A cyclic 
nucleotide-activated cation channel has 
been identified, and its mRNA has been 
shown to be confined to olfactory neurons 
(6). Similarly, it is possible that an olfactory- 
specific adenylyl cyclase exists that contrib- 
utes to the high enzyme activity seen in 
olfactory cilia (3, 7) .  With a monoclonal 
antibody that recognizes the Caz+/calmodu- 
lin-sensitive cyclase in brain, an adenylyl 
cyclase species has been detected in olfactory 
cilia that is distinct in molecular size from 

the brain form of the enzyme ( 7 ) .  
The molecular cloning of the brain-spe- 

cific type I enzyme (8) -has allowed us- to 
isolate cDNA clones encoding an adenylyl 
cyclase that may play an effector role in 
olfaction. A rat olfactory cDNA library was 
probed with an oligonucleotide based on 
the sequence of a tryptic fragment of puri- 
fied type I adenylyl cyclase from bovine 
brain (9). By this method, we isolated a 
single class of cDNA clones that encoded an 
adenylyl cyclase (type 11) (6) distinct from 
the type I enzyme. The mRNAs that encode 
the type I and type I1 enzymes were ex- 
pressed in high concentrations in brain but 
were undetectable or present in low 
amounts in olfactory tissue. The olfactory 
cDNA library was therefore screened again 
at low stringency (10) with the coding re- 
gion from the cDNAs for both the type I 
and type I1 adenylyl cyclases. A distinct class 
of clones was identified that weakly hybrid- 
ized to both of the previously identified 
forms. Approximately one in every 1000 
recombinant cDNA clones from the rat ol- 
factory cDNA library represented this type 
I11 adenylyl cyclase. 

We obtained the nucleotide and deduced 
amino acid sequences of the cDNA that 
encoded type I11 adenylyl cyclase (Fig. 1) 
(1 1). A potential initiation codon at position 
-173 is followed by stop codons in three 
reading frames.  he metrhionine codon at 
nucleotide + 1 is contained within a canon- 
ical eukaryotic translation initiation se- 
quence (12) and is followed by an open 
reading frame that encodes 1144 amino 
acids. 

Type I11 adenylyl cyclase appears to be 
topographically similar to the 1134amino 
acid type I enzyme (8). A comparison of the 
hydropathy profiles for both proteins (Fig. 
2A) revealed that each protein has two 
extremely hydrophobic regions: one near 
the NHz-terminus and the second between 
amino acid residues 600 and 850. The hy- 
drophobic regions of the type I11 protein 
each contain six potential membrane-span- 
ning segments in a pattern analogous to that 
predicted for the bovine brain type I cyclase, 
suggesting a similar orientation in the mem- 
brane. The type I enzyme, which is glycosy- 
lated, contains a consensus sequence for 
N-linked carbohydrate addition between 
membrane-spanning regions 9 and 10 on 
the putative extracellular face of the mole- 
cule (8). The type I11 protein also has a 
potential N-glycosylation site between 
transmembrane regions 9 and 10, and bio- 
chemical evidence confirmed that this pro- 
tein is a substrate for N-linked glycosylation 
(Fig. 3B). Treatment of olfactory cilia with 
peptide:N-glycosidase F (PNGaseF) altered 
the mobility of the protein, from that corre- 
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