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How Big Is the Universe of Exons? 

If genes have been assembled from exon subunits, the 
frequency with which exons are reused leads to an esti- 
mate of the size of the underlying exon universe. An exon 
database was constructed from available protein se- 
quences, and homologous exons were identified on the 
basis of amino acid identity; statistically significant 
matches were determined by Monte Carlo methods. It is 
estimated that only 1000 to 7000 exons were needed to 
construct all proteins. 

M OST GENES IN COMPLEX EUKARYOTES CONSIST OF 

short exons separated by long introns. In one view, genes 
are assembled, via intron-mediated recombination, from 

exon modules that code for functional domains, folding regions, or 
structural elements (1, 2). Such models portray introns as a retained 
primitive feature. Alternatively, the phylogenetic distribution of 
introns has led to arguments that introns are a derived feature of 
eukaryotic genomes, the result of bursts of parasitic elements 
invading early (and continuous) eukaryotic coding regions (3, 4). 

The hypothesis of exon shuffling proposes that complex genetic 
information is built up by joining previously independent exons, 
thus giving rise to more complex proteins and to novel enzymatic 
functions. This view of the modular assembly of extant genes is 
supported by the common structural features of certain large gene 
superfamilies, such as the immunoglobulin-like superfamily (5 ) ,  and 
by the examples of exon reuse observed in the mosaic structure of 
the LDL (low density lipoprotein) receptor and the EGF (epithelial 
growth factor) precursor (6 ) .  In other gene superfamilies, the older 
intron-exon gene structure is still apparent in certain representatives, 
while other members of the same family have lost introns (possibly 
through retroposition of a mature message) to produce genes with 
longer and more complicated exons, but with few or no remaining 

The authors are with the Department of Cellular and Developmental Biology, Harvard 
University, 16 Divinity Avenue, Cambridge, MA 02138. 

introns. An example of this pattern is the opsin superfamily, which 
includes genes with four introns as well as genes for beta-adrenergic 
receptors, which have no introns at all (7). 

The ancient character of introns is also supported by data 
suggesting that introns antedate the divergence of plants and 
animals a billion years ago (8). Intron-exon structures may also 
predate the endosymbiotic incorporation of chloroplasts and mito- 
chondria, which occurred about 2 billion years ago (9). Introns may, 
in fact, antedate the first branchings of life on Earth: the first 
protogenes may have already displayed intron-exon structure. The 
original exons may have been 15 to 20 amino acids long; processes 
of intron sliding and intron loss leading to more complex exons have 
produced the present day spectrum (2). 

In this article, the frequency of exon shuffling events is surveyed 
in order to address the following question: How many different 
exons were required to generate the current protein diversity? We 
have identified homologous exons (those of common evolutionary 
origin) on the basis of amino acid sequence similarity. To the extent 
that every exon in an underlying universe of exons has an equal 
probability of being incorporated into a gene, we can then estimate 
the size of that underlying universe by determining how frequently 
homologous exons appear in nonhomologous genes. 

We first constructed a database of all known exons. The available 
databases contain large numbers of homologous gene sequences; we 
eliminated such duplication in order to obtain a collection of exons 
derived solely from independent genes, unrelated by direct descent. 
We then made painvise comparisons of all these independent exons 
to identify statistically significant sequence similarities, which, we 
argue, indicate exon homology. 

Finally, using a simple sampling model, we took this number of 
exon repeats to estimate the size of the exon universe. If we survey 
n exons that have been drawn with replacement from an underlying 
set of size N, we expect the number of repeats to be given by the 
product of n(n - 1)/2, the number of pairs of objects in the 
collection, and the probability that any pair will match, l/N. The 
number of single repeats is thus n(n - 1)/2N. Accordingly the 
expectation for triple repeats is n(n - l ) (n  - 2 ) 1 6 ~ '  and so forth 
(10). 
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The exon database. The database of exons was drawn from the Fig. 2. Significance cutoffs 60 1 1 
eukaryotic genes of known structure recorded in the GenBank and a function of exon 

EMBL computer databases (11). Using the DNA sequence and the t i  50. 
features table, we wrote computer programs that translated each of the similarity statistic - ' 

C 4 0 -  exon. We then inspected the resulting collection of exons and that occurs only once in20 
,- 

corrected by hand those cases in which the exon boundary had been simulation runs h ~ r i s b  9f 
incorrectly specified (by typographical error). To obtain a distilled indicate sequence 30 

ty for each identified case 
database containing exons drawn only from putatively nonhomolo- of shuming. 

20 - 
gous proteins, we first purged the database of homologous genes 
from different species, retaining a representative human sequence 
wherever possible. We then removed closely related or duplicated 

m m m m m  y ? T s  
genes, such as the multiple globin sequences (alpha, beta, embryon- ~ W J ~ ~ E c " 8 8 d  O 

Exon length - ic, and myoglobin), again retaining but a single example, and culled 
repeating structures within single genes (such as multiple repeats of 
a single exon that make up the collagen gene, and the triply repeated convenience, the exon database was arbitrarily divided into nine 
domains in serum albumin and ovomucoid). Recurrent elements in length classes (20 to 29, 30 to 39, and so on). Inset a of Fig. 4 shows 
a gene superfamily, such as the multiple repeats of the immunoglob- the output of a representative similarity run for exons of length 40 
ulin fold in the immunoglobulin superfamily, or the multiple to 49. The number of events recorded in the histogram corresponds 
occurrences of the serine-protease domains in the family that to the number of exon pairs compared in the search. The histogram 
includes the blood-clotting factors, were also pared down to single of similarity values (for exons of length 40 to 49 a.a.) is normally 
representative examples. Our initial exon sequence comparisons still distributed about a mean similarity of 12 percent (with a variance of 
included occasional exon pairs displaying more than 80 percent 8 percent). Roughly speaking, if all amino acids appeared at the 
amino acid sequence similarity-one member of each such pair was same frequency, one expects an average match of 5 percent, im- 
discarded. Finally, we arbitrarily excluded all exons shorter than 20 proved about three standard deviations by the sliding algorithm. 
amino acids, both because of the high sequence similarity that would Our study involved a total of 215,166 painvise exon comparisons, 
be required to establish statistical significance and because this size and about 3 million actual comparisons. 
class contains many signal sequences, which display unusually biased We developed criteria for the statistical significance of exon 
amino acid compositions. These extensive refinings eventually re- sequence matches by carrying out repeated Monte Carlo simula- 
duced the original database to less than half its size, leaving us with tions, each time randomizing the sequence of every exon and 
a purged collection containing 1255 exons. The final distribution of comparing that randomized exon with the original data set. Each 
exon lengths peaks around 40 to 50 amino acids (Fig. 1). random sequence was constructed by sampling (with replacement) 

Criteria for exon similarity and statistical significance. We from an amino-acid pool derived from all the exons in the real data 
compared the amino acid sequences of individual exons by making set. Thus, the amino acid compositions of the randomized and real 
painvise comparisons, scoring only exact amino-acid matches, and data sets are identical, but a biased composition of an actual real 
allowing no gaps. A given exon of length N (number of amino acid exon is not likely to reappear in the randomized data set. The 
residues) was compared to all exons of length N to N+10, thus comparison program run on these randomized exons establishes 
allowing for small variations in exon length resulting from inser- the level of exon similarities expected by chance alone. By carrying 
tions, deletions, or splice-site shifts. To optimize alignments, we out 20 different randomized runs, we determine for each range of 
allowed exons to slide up to five amino acids out of end register in exon sizes the highest similarity value that occurred only once in 
either direction during each painvise comparison and recorded the 20 runs, and we take this as a cutoff value (Fig. 2). Any match 
best percentage match (the number of matching amino acids times between two real exons that is greater or equal to the cutoff value 
100, divided by the length of the shorter exon). For computational will be statistically significant, since it is likely to occur by chance 

no more than once in 20 trials. This similarity cutoff is quite 
stringent; in order to be considered homologous, exons must 
display sequence similarities ranging from 46 percent identity for 

30 exons of length 20 to 29 down to about 20 percent identity for 
exons of length 100. 

Fourteen exon pairs exhibited amino acid similarity greater or 
equal to the required cutoff values (Table 1). The similarity values of 

20 these matches, relative to the simulation cutoffs, appear in Fig. 2, 
and the matching pairs themselves are listed in Table 2. Some of 
these matches have been recognized before (shown by an asterisk 
[*I), while others are new. The known examples include the 

10 collagen-like domain of mannose-binding protein (12); the EGF- 
like domains documented in both Factor IX (13) and Factor XI1 
(14); the collagen motif characteristic of the p-chain of complement 
C l q  (IS), and the thyroglobulin-like alternatively spliced exon (6) of 

o the Ia antigen-associated chain (16). The examples of exon shuffling 
20 40 60 80 100 120 (Table 1) illustrate a number of themes. A motif, encoded by a single 

Exon length (amino acid residues) exon, may be performing a similar function in two otherwise 
~ i g .  1. ~istribution of exon lengths (in amino acid residues) in the final unrelated proteins. For example, the first exons of collagenase and reduced database. Exons were identified in GenBank (version 56) and 
EMBL (version 15). That was purged of repeats, homo~ogous major protein "ITe (at least in part) as peptides in 
genes, and superfamily relationships by repeated rounds of analysis. Exons both proteins (17, 18). Exon 4 of the chloroplast PX~A gene and 
shorter than 20 amino acids were excluded from the analysis. exon 17 of band 3 protein function as membrane-spanning domains 
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(19, 20). In contrast, exon 2 of P-lymphotoxin (21) and exon 3 of Table 2. Comparison of painvise similarity values for the real and 
the asialoglycoprotein receptor (12, 22) represent a single hydro- scrambled Monte Carlo simulations in the uppermost 5 Percent of the 

phobic domain playing different roles-as a signal sequence in the distributions. The table displays exon length intervals, numbers of actual 
comparisons, the similarity value that specified the top 5 percent cutoff, 

first protein and as a transmembrane segment in the latter. Table 1 ,he number of matches for both the M~~~~ carlo and the actual runs 
contains several exons derived from collagens, intermediate fila- above the 5 percent cutoff, the excess of the real matches relative to the 
ments, or other strucmral proteins. This pattern may reflect the simulations, and Fisher's exact P value for that excess (one degree of 

limited number of basic motifs that can serve as connective or matrix freedom). The Monte Carlo value is the mean of 20 simulations. 

proteins, as well as the evolutionarily conservative character of such 
Exon Comparisons Cutoff Monte 

protein sequences. Excess 
lengths (no.) (percent) Carlo Real matches 

To verifv that these matches re~resented genuine cases of exon 

Cutoff Monte Excess 
,uV. , (percent) Carlo Real matches 

V 

shuang ,  we compared the proteins from which the exons were 20-20 53251 21 3801 4072 271 0.000 
derived in their entirety, seeking to maximize the alignment across 30-39 61144 19 3359 3625 266 0.001 

4 M 9  
the whole protein by allowing gaps (23). In all the cases that we 5&s9 

54190 17 3557 3775 218 0.004 
27191 16 1614 1633 19 0.372 

describe, the amino acid similarity across the entire protein, or 60-69 11678 15 839 914 75 0.033 
across any region (excluding the exon pair we identify) is signifi- 70-79 3693 14 336 372 36 0.084 
cantly lower than that of our matched exon pair. We present two 80-89 1778 14 91  103 12 0.23 

90-99 examples of exon matches in the context of their proteins (Fig. 3). 558 13 56 54 -2 0.46 
1683 13 103 102 -1 0.50 

In Fig. 3A the intron positions are in similar phase, clearly the 
surrounding sequences and exons of these genes are not related to 

Table 1. Identified cases of exon homology. The identity, length, and 
sequence similarity of exon pairs are shown, arranged by decreasing 
similarity. Asterisks indicate previously identified exon homologies. 

Protein 
Exon sizes 

Exon (a.a. Similarity 

residues) (%) 

Human a-1  (11) collagen (32) 
Rat mannose-binding protein A (12) 

Human apolipoprotein B-100 (33) 
Human EGF receptor (34) 

Human blood coagulation factor XI1 
(14) 

Human factor IX gene (13) 

Human pro-a-l type I collagen (35) 
Human elastin (36) 

Mouse major urinary protein (18) 
Rabbit collagenase (1 7) 

Chicken steroid inducible 
hsp (37) 

Human neurofilament subunit NF-L 
(38) 

Human lymphotoxin (TNF-p) (21) 
Rat asialoglycoprotein receptor (22) 

Schizophyllum 1G2 gene (fruiting) 
139) 

~ ; m &  fibronectin (40) 

Chicken fps proto-oncogene (41) 
Human neurofilament subunit NF-L 

(38) 

Mouse a-2 type IV collagen (42) 
Human complement C l q  B-chain 

(15) 

Murine Ii gene, Ia antigen-associated 
116) 

~ d k k  thyroglobulin (43) 

Silkmoth chorion (44) 
Mouse keratin, intermedate filament 

(45) 

C. veinhavdtii chloroplast psbA gene 
119) 

~ A u s e  band 3 (20) 

Human serum albumin (46) 
Human K6b epidermal keratin (47) 

the degree exhibited by the relevant exon sequences. In Fig. 3B the 
intron junctions have drifted in both position and phase. 

These 14 exon matches predict an underlying exon universe of 
56,000 sequences. Because we rely on amino acid sequence identity 
in our analysis, allow no gaps in the alignment process, and demand 
such a high degree of similarity for significance, we are likely to 
underestimate the number of homologous exon pairs, and hence 
overestimate the universe. Certain standard examples of exon shuf- 
fling, such as the LDL receptor, were missing from the database and 
are so are not in our table. We have also omitted certain well-known 
cases of exon shuang ,  such as the serine protease domain, a 
conspicuous feature of a large family of proteins (24-26), and the 
various immunoglobulin motifs shared by the members of the 
immunoglobulin (Ig) superfamily (5 ) .  Both the serine protease and 
immunoglobulin domains span more than a single exon and thus do 
not meet the specific criteria of this study. 

Cases where intron loss leads to the incorporation of a shufled 
exon into a larger protein domain are also likely to be missed given 
the limited size of our search window (* 10 amino acids). Finally we 
demand 30 to 40 percent sequence identity for most comparisons. 
Proteins (or protein domains) that have drifted very far in amino 
acid sequence may nonetheless retain their three-dimensional simi- 
larity: one can identify structural homologies in circumstances 
where only 10 percent of the amino acid sequence is conserved (27). 
Thus, many exons with common evolutionary origins will not be 
recognizable by amino acid sequence similarity alone. We believe 
that this calculation of 56,000 members could easily be a five- to 
tenfold overestimate of the size of the exon universe. 

The wedge calculation. In examining the distribution of similar- 
ity values, we noticed an excess of real matches (relative to our 
simulations) at the high end of the similarity distribution. Is this 
excess statistically significant? In the earlier Monte Carlo calcula- 
tions, the randomized sequences were chosen to match the overall 
amino acid composition of the exon database. Two real exons that 
share a highly skewed amino acid composition then would likely 
match above the significance criterion. In that first calculation, we 
considered such a match to be evidence of evolutionary homology. 
To test more stringently for any excess of real matches, we carried 
out new Monte Carlo simulations, this time scrambling the amino 
acid sequence of each exon (creating anagrams of the real exons) and 
hence preserving the compositional bias of each particular exon. We 
averaged 20 simulations to produce a baseline distribution against 
which to compare the real exon similarities. The data for exon 
comparisons in the 40 to 49 window are shown in Fig. 4. The full 
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curve in the inset shows the distribution of the matches in the real 
data, and the enlargements show, for the right-hand tail of the 
similarity value distribution, the differences between the matches 
found with real data and those from scrambled exons. To estimate 
the significance of this excess, we took the top 5 percent of the 
distribution of the similarity statistic, compared the real and sirnu- 
lation distributions, and determined the significance of the excess 
(Fisher's exact test). In this top 5 percent includes all matches above 
17 percent sequence similarity; the excess of real over scrambled is 
shown as the black tips of the bars. Table 2 shows the comparisons 
of the top 5 percent of the distribution for each exon size class, 
which we refer to as "the wedge." Significant excesses of real 

A L2 
M D D Q R D L I S N H E Q L P 1 L G N R P R E P E R C S R G A L Y T G V S V L V A L . L L A G Q A  
(Ii gene) I  I I  I  I I  

FDFYQRRLVTLAESPRAPSPVWSSAYLPQCDAFGGWEPVQCHAA . . . . . .  
T2 (thyroglobulin) 

L1 
TTAYFLYQQQGRLDKLTITSQNLQLESLRMKLPKSAKPVSQMRMATPLLM 

I I I I  I I  . . . .  . . . . . .  TGHCWCVDGKGEYVPTSLTARSRQ. IPQCPTSCERLRASG 
T 1 T1 

Lo LO 
RPMSMDNMLLGPVKNVTKYGNMTQDHVMHLLTRSGPLEYPQLKGTFPENL 

I  / / I 1  
. . . . . . . .  LLSSWKQAGVQAEPSPKDLF.1PTCLETGEFARLQASEAGTW 

t n  . - 
Lo L1 

KHLKNSMDGVNWKIFESWMKQWLLFEMSKNSLEEKKPTEAPPKVLTKCQE 
I I 1  I I  

CVDPASGEGV . . . . . . . . . . . . . . . . . . . . . . . .  PPGTNSSAQCPSLCEV 
T 1 

EXON 6b 
EVSHIPA.VYPGAFRPKC.DENGNYLPLQCHGRHCYCWCVFPNGTEVPHT 

I  I  I  I  I l l  I l l  I  I l l  I  
LQSGVPSRRTSPGYSPACRAEDGGFSPVQCDPAQGSCWCVLGSGEEVPGT 

EXON 18 
L1 

KSRGRHNCSEPLDMEDLSSGLGVTRQELGQVTL 
I I  

RVAGRQPA . . . . . . . . . . . . . . . . . . . . . . . . .  
T1 

B & 1 EXON 3 
MTKDYQDFQHLDNENDHHQLQRGPPPAPRLLQRLCSGFRLFLLSLGLSIL 
(asialoglycoprotein receptor) I I  I  I I  I  I l l  
. . . . . . . . . . . . . . . . . . . . . . .  MTPPERLFLPRVCGTTLHLLLLGLLLV 

(lymphotoxin) EXON 2 
L1 L1 

LLVWCVITSQNSQLREDLRVLRQNFSNFTVSTEDQVKALTTQGERVGRK 
I  I I I  I  
LLPGA . . . . . . . . . . . . . . . . . .  QGLPGVGLTPS . . . . . .  AAQTARQHPK 

To 
L1 

MKLVESQLEKHQEDLREDHSR . . .  LLLHV . . .  KQLVSDVRSLSCQMAALR 
I I  I l l  I I 1  I  I  I  I l l  
MHLAHSNL.KPAAHL1GDPSKQNSLLWRANTDRAFLQDGFSLSNNSLLVP 

f l  
L1 

GNGSERICCPINWVEYEGSCYWFSSSVKPWTEADKYCQLENAHLVVVTSW 
I  I I I 1  I  I  I 

TSG . . .  IYFVYSQVVFSGKAYSPKATSSPLYLAHEVQLFSSQYPFHVPLL 
Lo L2 

. . .  EEQRFVQQHMGPLNTWIGLTDQNGPWKWVDGTDYET GFKNWRPGQPD 
I  I I I I  I  I  

SSQKMV..YPGLQEPWLHSMYHGAAFQLTQGDQLSTHTDGIPHLVLSPST 

DWYG.HGLGGGEDCAHFTTDGHWNDDVCRRPYRWVCETELGKAN* 
I I 

VFFGAFAL* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fig. 3. Representative exon s h u f i g  events. The exons shown in boldface 
are displayed as originally aligned by our search; the surrounding sequences 
and exons are simply displayed for contrast. Vertical arrows indicate the 
phase of the introdexon boundaries. (A) Comparison between the alterna- 
tively spliced exon (6b) of the murine Ii gene (16) and exon 18 of bovine 
thyroglobulin (43). (B) Comparison of exon 3 of the rat asialogylcoprotein 
receptor (22) and exon 2 of human lymphotoxin (21).  The surrounding 
protein sequences are aligned to maximize overall sequence similarity. 
Abbreviations for the amino acid residues are: A, Ala; C, Cys; D, Asp; E, 
Glu; F, Phe; G, Gly; H,  His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; 
Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 

matches do exist for most of the exon size classes (28). The total 
excess sums to 830 matches over all significant intervals. This 
number of matches, arising in the sample of 1255 exons, predicts an 
underlying exon universe of just 950 exons. 

This low number for a universe of fundamental shapes suggests 
that our database of 1255 exons includes examples of most of the 
original exon universe. The calculation demonstrates that the 
number of matches is significantly above the expectation based on 
stochastic sequence similarity, even after discounting shared com- 
positional biases. (For example, two exons that consist of 50 
percent leucines will tend to match for that reason alone; this 
calculation excludes such matches.) While this approach provides 
substantial statistical power, it does not identify specific pairs of 
homologous exons. One cannot deduce which matches in the 
wedge are biologically meaningful and which constitute the 
random background. 

A further test also shows that the excess of matches in the wedge 
is likely due to exon shufing. One might have argued that the excess 
of amino acid identities in the real sequences reflects some conver- 
gent or recurrent theme of protein structure, apparent in real 
sequences but absent in scrambled sequences. For example, some 
hidden sequence regularity in a helices or some correlation in 
dipeptide or tripeptide frequencies could cause protein sequences to 
match against each other at a frequency above random expectation. 
To test for a strong effect of such features, we carried out further 
Monte Carlo simulations, this time creating pseudo-exons by trans- 
posing a block of sequence from the front (NH,-terminus) to the 
rear (COOH-terminus) of an exon and then comparing this pseudo- 
exon against the other members of the database. This rearrangement 
of sequence blocks within an exon would preserve sequence simi- 
larity due to local features but destroy any similarity that depended 
on the actual boundaries of the exon. Simulations transposing 
blocks of 15 to 25 amino acids for the 40 to 49 window gave results 
that agree with those of the scrambled exon simulation; there is the 
same significant excess of matches of real exons over both the 
"scrambled exon" simulations and the "block-transposed exon" 
simulations. The similarity between real exons thus does not derive 
from small stretches of local identity but depends instead on the 
position of the outer boundaries. We expect this outcome if the 
excess of matches displaying high scores comes about because of true 
exon homology, where the protein sequence within the exons has 
been preserved with respect to the positions of the introns. 

Reliability of the estimates. We present two different methods 
to estimate the size of the exon universe. The first identifies 14 
examples of exon homology and estimates an underlying exon 
universe of about 56,000 members. The second identifies a signifi- 
cant total excess of high painvise similarities (in the top 5 percent of 
the distribution) corresponding to 830 cases of exon shuffling, thus 
reflecting an underlying universe of 950 exons. We believe that the 
first calculation overestimates the size of the exon universe, while the 
second calculation, although reflecting some significant aspect of 
exon structure, may be an underestimate. Our best expectation lies 
somewhere in between. The geometric mean of these numbers is 
about 7000. Our final expectation, on balance, is between 1000 and 
7000 for the size of the exon universe. 

Our conclusion may be exaggerated. We may not have succeeded 
in eliminating all of the biases inherent in the computer databases. 
The sequence similarity we observe might be the result of conver- 
gent evolution, although there is no a priori reason to suspect that 
any convergence would respect exon boundaries. Furthermore, this 
search could examine only eukaryotic sequences. If the prokaryotic 
proteins turn out not to be related to the exon peptide patterns 
apparent in the eukaryotic sequences, the number of total patterns in 
the universe would necessarily increase. Finally, the traditional 
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modular building. of  rotei ins entails a faster but far more restricted 

Similarity (%) 

Fig. 4. Representative distribution of the pairwise similarity values for real 
and randomized exons of length 40 to 49. The figure shows the highest 5 
percent of the distribution for the real and simulation comparisons: cross- 
hatched bars, simulation results; white bars, real exon comparisons. Excess of 
real matches (wedge) is displayed as black boxes. Inset a shows the total 
distribution of similarity scores for real exon pairwise comparisons. Inset b 
enlarges the rightmost tail of the distribution. 

strategies of molecular biology may constrain the kinds of sequences 
found; systematic whole genome sequences may reveal novel classes 
of proteins and exons. 

The surprisingly small size of our estimate emphasizes the finite 
character of the underlying exon universe. The number of possible 
40-amino acid-long structures, 2040 or los2, is a much larger 
domain of shapes than the lo3  to lo4 that we here predict. Although 
rules restricting the folding of amino acid chains may have elimi- 
nated a large number of amino acid sequences, chance alone may 
account for which specific elements were in the initial set of exons 
that gave rise to modern proteins. With a sufficient set of three- 
dimensional shapes, stabilities, and rudimentary functions, the evo- 
lution of proteins could be set in motion. 

Several recent studies on protein structure also suggest that the 
number of possible three-dimensional shapes is quite small. Jones 
and his co-workers observed that if one connects two points with a 
loop of 6 or 7 amino acids, only a limited number of Ca patterns 
will fit (29). Unger and co-workers (30) have recently shown, by 
examining the three-dimensional Ca structures of each set of six 
amino acids in the crystallographic database, that the structures of all 
hexamers can be clustered into only 80 types rather than 10'. These 
observations suggest that the range of shapes in proteins is not as 
extensive as one might have feared. Recently, Sander and Schneider 
(31) have sought to establish the extent of amino acid sequence 
similarity that predicts structural (three-dimensional) "homology" 
between two protein sequences. Their analysis determines a curve of 
threshold similarity parallel, but slightly more stringent, than our 
cutoff curve (Fig. 2) and strongly supports the argument that our 
homologous exon pairs may indeed adopt similar three-dimensional 
configurations within the different proteins. 

Our argument also helps to elucidate the processes of protein 
evolution. The complexity of modern proteins would have been 
generated by simply combinatorial arrangements of a limited nurn- 
ber of units of structure and function. Particular functional units- 
DNA-binding motifs, for example, or metal-binding domains- 
reappear in different contexts to confer new functions on novel exon 
combinations. 

The consequences of a combinatorial search through sequence 
space are profound. In contrast to a random amino-acid search, the 

u .  

exploration of possible solutions. A 200 amino acid protein may 
result from a linear search through only 25,000 possible combina- 
tions (five modules of 40 amino acids each; 5000 possible exon 
shapes), rather than the 20200 solutions that comprise a full amino- 
acid-by-amino-acid search. 

History constrains all evolutionary phenomena. We have argued 
that modern protein diversity represents only a very limited explo- 
ration of sequence space, an exploration constrained by the success 
of earlier motifs. While we could argue that the corner of sequence 
space occupied by modern proteins represents the best of all possible 
worlds, a selective optimum reached after a careful evolutionaqr 
walk through all of sequence space, this seems extremely unlikely. 
The processes that result in protein diversification+exon reassort- 
ment initially, followed by gene duplication and divergence- 
sharply limit protein sequence diversity. Extant proteins may well lie 
at local, not global, optima. 

REFERENCES AND NOTES 

1. W. Gilbert, h'ature 271, 501 (1978); W. F. Doolittle, ibid. 272, 581 (1978); C. C. 
F. Blake, ibid. 306, 535 (1983); C. C. F. Blake, ibid. 277, 598 (1979). 

2. W. Gilbert, Cold Spring Harbor Symp. Quant. Biol., 52, 901 (1987). 
3. T. Cavalier-Smith, Nature 315, 283 (1985); J. Rogers, ibid., p. 458. 
4. D. A. Hickey, B. F. Benkez, S. M. Abukashawa, J .  Theor. Biol. 137, 41 (1989); 

D. A. Hickey and B. F. Benkez, ibid. 121, 283 (1986). 
5. T. Hunkapiller and L. Hood, Adv. Immunol. 44, 1 (1989). 
6. T. C. Siidhof, J .  L. Goldstein, M. S. Brown, D. W. Russell, Science 228, 815 

(1985); T. C. Siidhof et al., ibid., p. 893. 
7. R. A. F. Dixon et al., Natiire 321, 75 (1986); T. Kubo et al., ibid. 323,411 (1986). 
8. M. Marchionni and W. Gilbert, Cell 46, 133 (1986); W. Gilbert, M. Marchionni, 

G. McKnight, ibid., p. 151. 
9. K. Obaru,T. Tsuzuki, C. Setoyama, K. Shimada, J .  Mol. Biol. 200, 13 (1988); C. 

Setoyama, T. Joh, T. Tsuzuki, K. Shimada, ibid. 202, 355 (1988); M. C. Shih, P. 
Heinrich, H. M. Goodman, Science 242, 1164 (1988); F. Quigley, W. F. Martin, 
R. CerfT, Proc. hTatl. Acad. Sci. U . S . A .  85, 2672 (1988). 

10. If the exons have a general probability distribution P, (for the ith exon), then the 
expectation of doubles is n(n- 1)12 times .Z P: since .Z P: is the total probability 
that a pair matches. Similarly triples are [n(n-l)(n-2)16] .ZP?. If the distribution 
were exponential P(x=(l/u)exp(-xlu), then the estimate for the universe is 2u, 
the number of exons that would account for 86 percent of the occurrences. 

11. C. Burks et al. "GenBank: Current Status and Future Direction," in Molecular 
Evolution: Computer Analysis of Protein and ~Vucleic Acid Sequences, R. F. Doolittle, 
Ed. (Academic Press, New York, in press); in our work, exons were drawn from the 
GenBank (version 56) and EMBL (version 15) databases. 

12. (RATMABPA) K. Drickamer andV. McCreary, J. Biol. Chem. 262,2582 (1987); 
M. E. Taylor, P. M. Brickell, R. K. Craig, J. A. Summerfield, Biochem. J .  262,763 
(1989). 

13. (HUMFIXG) D. M. Anson et al., EMBO J .  3(5), 1053 (1984); S. Yoshitake, B. 
G. Schach, D. C. Foster, E. W. Davie, K. Kurachi, Biochemistry 24, 3736 (1985). 

14. (HUMCFXII) D. E. Cool and R. T.  A. MacGillivray, J .  Biol. Chem. 262, 13662 
(1987). 

15. (HUMClQBl) K. B. M. Reid, Biochem J .  231, 729 (1985). 
16. (MMIIGC) N. Koch, W. Lauer, J. Habicht, B. Dobberstein, EMBO J .  6, 1677 

(1987). 
17. (RABCN) M. E. Fini, I. M. Plucinska, A. S. Mayer, R. H. Gross, C. E. 

Brinckerhoff, Biochemistry 26, 6156 (1987). 
18. IMUSMUPBS) A. 1. Clark. P. M. Clissold. R. A1 Shawi. P. Beattie. T. Bisho~. 

EMBO J .  3, 1045 (i984); k. J. Clark, P. ~haza l ,  R. W. Bingham, D'. ~arret t ,? :  
0. Bishop, ibid. 4, 3159 (1985). 

19. (CRECPSBA) J. M. Erickson, M. Rahire, J.-D. Rochaix, EMBO J .  3, 2753 
(1984); J.  K. Mohana Rao, P. A. Hargrave, P. Argos, FEBS Lett. 156(1), 165 
11983). 

20. (MUSBAND~I) R. R. Kopito, M. A. Andersson, H .  F. Lodish, Proc. ~Vatl .  Acad. 
Sci. U . S . A .  84, 7149 (1987). 

21. (HUMTNFB) G. E. Nedwin, h'ucleic Acids Ref.  13, 6361 (1985). 
22. (RATRHL) J. 0. Leung, E. C. Holland, K. Drickamer, J .  Biol. Chem. 260,12523 

11985) ,-----,' 
23. The full-protein alignments were made with the algorithm of Needleman and 

Wunsch, as implemented in the GAP programs provided by the University of 
Wisconsin [J. Devereux, P. Haeberli, 0. Smithies, Nucleic Acids. Rex. 12(1), 387 
(1984)l. Where necessary, alignments were anchored on the exon pair we 
identified. 

24. G. H. Swift et al., J .  Biol. Chem. 259, 14271 (1984). 
25. P. J. O'Hara et al., Proc. Natl. Acad. Sci. U . S . A .  84, 5158 (1987). 
26. S. K. Hanks, A. M. Quim, T. Hunter, Science 241, 42 (1988) 
27. C. C. Hyde, S. A. Ahmed, E. A. Padlan, E. W. Miles, D. R. Davies, J .  Biol. Chem. 

263, 17857 (1988). 
28. Another way of doing this calculation is to consider the excess in each percentage 

match and calculate a chi-squared ((observed-e~~ected)~/ex~ected) for each of the 
entries (pooling values first for the small entries) then add all of these chi-square 

7 DECEMBER 1990 RESEARCH ARTICLES 1381 



values and demand significance for the number of degrees of freedom correspond­
ing to the number of entries pooled. Both of these calculations suggest that the 
excess is significant at well above the 95 percent level. 
T. A. Jones and S. Thirup, EMBOJ. 5, 819 (1986). 
R. Unger, D. Harel, S. Wherland, J. L. Sussman, Proteins: Struct. Fund. Genet. 5, 
355 (1989). 
C. Sander and R. Schneider, Proteins, in press. 
(HUMCG1A1) K. S. E. Cheah, N. G. Stoker, J. R. Griffin, F. G. Grosveld, E. 
Solomon, Proc. Natl. Acad. Sci. U.S.A. 82, 2555 (1985). 
(HUMAPOB1) T. J. Knott et al., Science 230, 37 (1985). 
(HUMEGFRG) S. Ishii et al., Proc. Natl. Acad. Sci. U.S.A. 82, 4920 (1985). 
(HUMC1PA) M.-L. Chu et al., Nature 310, 337 (1984). 
(HUMEL) Z. Indik et al., Proc. Natl. Acad. Sci. U.S.A. 84, 5680 (1987). 

37. (GGHSP108) M. Forsgren, B. Raden, M. Israelsson, K. Larsson, L.-O. Heden, 
FEBS Lett. 213, 254 (1987). 
(HUMNFLG) J.-P, Julien et al, Biochim. Biophys. Acta 909, 10 (1987). 
(SC01G2) J. J. M. Dons et al., EMBO J. 3, 2102 (1984). 
(HUMFN) A. R. Kornblihtt, K. Vibe-Pedersen, F. E. Baralle, Nucleic Acids Res. 
12, 5853 (1984). 

38. 
39. 
40. 

41. (GGCFPSE) C.-C. Huang, C. Hammond, J. M. Bishop, J. Mol. Biol. 181, 175 
(1985). 

42. (MUSCOLA2) M. Kurkinen, M. P. Bernard, D. P. Barlow, L. T. Chow, Nature 
317, 177(1985). 

43. (BTTHYR) J. Parma, D. Christophe, V. Pohl, G. Vassart, J. Mol. Biol. 196, 769 
(1987). 

44. (BMOCH11A) K. Iatrou, S. G. Tsitilou, F. C. Kafatos, Proc. Natl. Acad. Sci. 
U.S.A. 81,4452(1984) . 

45. (MUSKETEPI) P. M. Steinert, R. H. Rice, D. R. Roop, B. L. Trus, A. C. Steven, 
Nature 302, 794 (1983); T. M. Krieg et al., J. Biol Chem. 260, 5867 (1985). 

46. (HUMALBGC) P. P. Minghetti et al., J. Biol. Chem. 261, 6747 (1986). 
47. (HUMKEREP) D. Marchuk, S. McCrohon, E. Fuchs, Proc. Natl. Acad. Sci. 

U.S.A. 82, 1609 (1985). 
48. We thank J. Willett, H. Spencer, and R. C. Lewontin for helpful statistical advice, 

J. Knowles for careful reading of the manuscript, and members of the Gilbert Lab 
for useful assistance and criticism. This work is supported by NIH grant 
GM37997-03. 

24 August 1990; accepted 22 October 1990 

^ 9 < p ^ ^ 5 

" Calm down, Helen. We've been the focus of watch-dog groups before J[ 
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