
yses concerning plant defensive strategies 
should consider how plants can safeguard 
themselves against severe herbivore injury 
by attracting predators or parasitoids (18). 
The terpenoids are reliable cues for the 
parasitoids because they are closely associat- 
ed with herbivore damage and they are 
released even during the frequent pauses in 
eating by the caterpillars (Fig. 2). We do not 
yet know whether the induced reaction is 
limited to the damaged sites, or whether it is " 
systemic as has been shown in other studies 
(19, 20). 

Our results indicate an active release of 
chemicals by plants that is exploited by host- 
searching parasitoids. It is likely that the 
ter~enoids and indole are involved in other 
types of interactions as well. They may, for 
example, act as oviposition deterrents for 
herbivorous insects searching for sites to 
deposit their eggs or function in cornrnuni- 
cation between plants (20, 21). More knowl- 
edge about the injury-dependent production 
of airborne semiochemicals by plants may 
point to new possibilities for biological con- 
trol of pest insects. 
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Increase of the Catalytic Activity of Phospholipase 
C- y 1 by Tyrosine Phosphorylation 

Phospholipase C - y l  (PLC-yl), an isozyme of the phosphoinositide-specific phospho- 
lipase C family, which occupies a central role in hormonal signal transduction 
pathways, is an excellent substrate for the epidermal growth factor (EGF) receptor 
tyrosine kinase. Epidermal growth factor elicits tyrosine phosphorylation of PLC-yl  
and phosphatidylinositol4,5-bisphosphate hydrolysis in various cell lines. The ability 
of tyrosine phosphorylation to  activate the catalytic activity of PLC-yl  was tested. 
Tyrosine phosphorylation in intact cells or  in vitro increased the catalytic activity of 
PLC-yl.  Also, treatment of EGF-activated PLC-yl with a tyrosine-specific phospha- 
tase substantially decreased the catalytic activity of PLC-y1. These results suggest that 
the EGP-stimulated formation of inositol 1,4,5-trisphosphate and diacylglycerol in 
intact cells results, at least in part, from catalytic activation of PLC-y1 through 
tyrosine phosphorylation. 

INCE IT WAS RECOGNIZED THAT INO- 

sit01 1,4,5-trisphosphate (Ins 1,4,5- 
P3) and diacylglycerol (DAG) are im- 

portant intracellular second messengers in 
hormonal regulation of various cellular 
functions (1,2), considerable effort has been 
invested in dissecting the molecular events 
that underlie receptor modulation of phos- 
phoinositide-specific phospholipase C 

(PLC) activity. A variety of receptor-PLC 
coupling systems are modulated by bacterial 
toxins, aluminum fluoride, and analogs of 
guanosine triphosphate (GTP) reagents that 
are believed to modify the actions of gua- 
nine nucleotide binding proteins (G pro- 
teins). As a result, it has been suggested that 
these hormones modulate PLC activity by a 
G protein-mediated mechanism (3). In con- 
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ity. Nearly identical results were obtained in 
three similar experiments. Although there is 
a detectable amount of serine kinase activity 
in PLC-7I immunoprecipitates (Fig. 2B, 
lane 1), the purified EGF receptor prepara­
tion, which phosphorylated PLC-7I on ty­
rosine residues (Fig. 2B, lane 2), did not 
affect this coprecipitated serine kinase activi­
ty or the phosphoserine content of PLC-7I. 
Therefore, it is unlikely that in vitro activa­
tion of PLC-7I by the EGF-receptor tyro­
sine kinase was mediated by activation of a 
coprecipitating serine kinase. 

Finally, we sought to determine whether 
the activated enzyme could be deactivated 
by treatment with specific phosphotyrosine 
phosphatases (11) (Fig. 3). The activity of 
PLC-7I (immunoprecipitated from EGF-
treated cells) was reduced by 73% after 
treatment with a truncated form of the 48-
kD T cell protein tyrosine phosphatase (TC-
PTPase) (18). The average inhibition 
(n = 7) of PLC-7I activity was 49% and 
could be completely blocked by tyrosine 
phosphatase inhibitors (100 |xM vanadate 
and 10 |xM molybdate) (19). No effect on 
PLC-7I catalytic activity was observed with 
CD45 (20), a tyrosine phosphatase that 
dephosphorylates the autophosphorylated 
EGF receptor more efficiently than does 
TC-PTPase (19). Phosphoamino acid analy­
sis (Fig. 3B) of phosphatase-treated PLC-7I 
prepared from 32P-labeled, EGF-treated 
cells showed that TC-PTPase depleted phos­
photyrosine from PLC-7I, while CD45 did 
not. In addition, TC-PTPase did not signifi­
cantly alter the phosphoserine content of 
PLC-7I (Fig. 3B, lane 2). Neither phospha­
tase altered basal PLC-7I activity (that is, 
from untreated cells), nor was there evi­
dence of proteolysis of PLC-7I after phos­
phatase treatment, as measured by immuno-
blotting (19). Furthermore, phosphatase 
2A, a phosphoserine-threonine-specific 
phosphatase, significantly reduced the phos­
phoserine content of PLC-7I, but did not 
decrease PLC-7I activity (21). Thus, for 
EGF activation of PLC-7I, tyrosine phos­
phorylation appeared to be the major regu­
lator of enzyme activity. In contrast, a mito­
gen-stimulated increase in both phosphotyr­
osine and phosphothreonine is required to 
increase catalytic activity of MAP-2 kinase 
(22). 

The capacity of EGF to modulate cell 
growth and differentiation requires that the 
EGF receptor generate an intracellular bio­
chemical signaling cascade. Stimulation of 
receptor tyrosine kinase activity is a primary 
event in this cascade, and identification of 
substrate proteins that function in the mito-
genic signaling pathway has been an obvi­
ous but elusive goal. Because EGF promotes 
Ptdlns 4,5-P2 hydrolysis in intact cells, it has 

been suggested that PLC is activated by an 
undefined mechanism after EGF treatment. 
We have demonstrated reversible modula­
tion of PLC-7I activity by tyrosine phos­
phorylation and dephosphorylation. How­
ever, it remains to be determined whether 
additional proteins participate in modula­
tion of PLC-7I activity. Because a number 
of proteins immunoprecipitate with PLC-7I 
(10, 14)^ it is possible that they also influence 
the regulation of PLC-7I activity. 

Formation of Ins 1,4,5-P3 can be pro­
voked by stimulation of tyrosine kinase-
dependent receptors or G protein-depen­
dent receptors, such as bradykinin or purin-
ergic receptors. Thus, two distinct biochem­
ical mechanisms are utilized for the activa­
tion of PLC activity in mammalian cells. 
Distinct classes of receptors may activate 
specific PLC isozymes by various mecha­
nisms, or there may be multiple mechanisms 
for the activation of one PLC isozyme, such 
as PLC-7L 
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Kinetics of Gramicidin Channel Formation in Lipid 
- 

Bilayers: Transmembrane Monomer Association 

Conducting gramicidin channels form predominantly by the transmembrane associa- 
tion of  monomers, one from each side of  a lipid bilayer. In single-channel experiments 
in planar bilayers the two gramicidin analogs, wal1]gramicidin A (gA) and [4,4,4-F3- 
Vall]gramicidin A (F3gA), form dimeric channels that are structurally equivalent and 
have characteristically different conductances. When these gramicidins were added 
asymmetrically, one to each side of a preformed bilayer, the predominant channel type 
was the hybrid channel, formed between two chemically dissimilar monomers. These 
channels formed by the association of  monomers residing in each half of the 
membrane. These results also indicate that the hydrophobic gramicidins are surpris- 
ingly membrane impermeant, a conclusion that was confirmed in experiments in which 
gA was added asymmetrically and symmetrically to preformed bilayers. 

RAMICIDIN CHANNELS ARE MEM- 

brane-spann~ng structures that 
senre as prototypical models for 

studying mechanisms of ion permeation, 
lip~d-protein interactions, and conforma- 
tional dynamics of ion-permeable channels 
(1). The primary sequence of gA is (2): 

The mechanism of gramicidin channel inser- 
tion into lipid b~layers is poorly understood 
because the membrane-spanning channels 
are formyl-NH-to-formyl-NH terminal di- 
mers of p6 3-helices, as suggested by U r n  
(3), whereas gramicidins dissolved in organ- 
ic solvents exist as mixtures of parallel and 
antiparallel intemvined dimers and disor- 
dered monomers ( 4 6 1 ,  depending upon sol- 
vent type and gramicidin concentration. 
Gramicidins therefore undergo co~lformation- 
al changes it1 their transition from dissolved 
molecules to molecules dispersed in water (7) 
and finally to membrane-spanning channels. 
Furthemiore, as membrane-associated granli- 
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cidms exist in a number of (slowly intercon- 
verting) collformational states ( 8 ) ,  it is not 
known whether the major pathway for chan- 
nel formation involves the membrane inser- 
tion of (antiparallel) intemvined dlmers with 
a subsequent formation of the  helical 
duner (9) or die transmembrane association 
of P-helical monomers residing in opposite 
monolayers (Fig. 1). 

We addressed the channel formation 
problem by exploiting the follo\ving features 
of gramicidin channels: (i) gramicidin chan- 
nels are symmetrical dimers ( lo) ,  with a 
single predominant conductance state (11); 
(ii) sequence-substituted gramicidins form 
symmetrical channels (or homodimers) that 
have ditferent conductances (12); and (iii) 
hybrid channels (or heterodimers) form be- 
tween the chemically dissimilar analogs (12, 
13). One can thus use the amplitude of 
individual channel events in a real-time assay 
to identify which molecules form each con- 
ducting event. 

In 1.0 M CsCI, the conductances of gA 
and F3gA channels di&r threefold because 
of the -CF3 substitution in F3gA (12). When 
either gramicidin is added synlrnetrically to 
the aqueous solutions on both sides of a 
bilayer, a single characteristic channel type is 
obsenred (Fig. 2, A and B).  When both 
gramicidins are added symmetrically, three 
channel types are obsenred (Fig. 2C), corre- 

sponding to the mTo homodimers and the 
heterodimer (12). 

When gA and F3gA are added asvrnmetri- 
cally to opposite sides of a pefoimed bi- 
layer, all three channel types are again ob- 
senled (Fig. 3, A through C). However, 
when the channel appearance rates are plot- 
ted versus time, the heterodimers dominate 
throughout all but the first few minutes 
(Fig. 3D). The homodimer appearance rates 
remain stable and may decrease slightly dur- 
ing the first few minutes. The dominance of 
heterodiniers shows that under our condi- 
tions (6 to 15 pM gramicidin dispersed in 
water from a 15 nM solution in ethanol) 
most gramicidin channels result from the 
transmembrane association of ph.3-helical 
monomers as outlined in Fig. 1A. 

After 20 min, the nlenlbranes were bro- 
ken and reformed in order to equilibrate 
both gramicidins between the nionolayers. 
A large change in the channel appearance 
pattern occurred (Fig. 3C) : the homodimer 
appearance rates increased, and the hetero- 
dinler appearance rate decreased (15). 

Comparable results were obtained when 
only gA was added to one side, or  to both 
sides, of preformed bilayers (Fig. 4). In 
these experiments, the graniicidin concen- 

Fig. 1. Schematic representation of two gramici- 
din channel insertion mechanisms. (A) Dimeriza- 
tion of fib,'-helical monomers (from each side of 
the membrane). Gramicidin monomers adsorb to 
each monolayer from the immediately adjacent 
aqueous solution and fold into fih 3-helices (top), 
folded monomers insert into each monolayer 
(middle), and dimerize to form the channel (bot- 
tom). (B) Insertion of intemined antiparallel 
dimers followed by unwinding to form p6.3- 
helical dimers. Intemvined dimers adsorb to each 
monolayer (top), insert to span thc membrane 
(middle), and unwind to form the channels (bot- 
tom). 
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