
43. , H . L. Lee, G. Tagaras, Matiage. Sci 33, 1277 (1987).
44. W. B. Rouse, in Hirman Detection and Diagrzosis oj 'System Failirres, J . Rasmussen and

W. B. Rouse, Eds. (Plenum, New York, 1981), pp. 199-216.
45. R. E. Curry, ibid., pp. 171-184.
46. C. A. Heimer, A n n u . R e v Sociol 14, 491 (1988).
47. J. G, March and J. P. Olsen, Ambtgriity and Choice iri Orgariizatioris (Univers~tetsfor-

laget, Bergen, Norway, 1976).
48. J. G. march, Decisions in Orgariizations (Blackwell, New York, 1988).
49. J . Pfeffer and G. R. Salancik, T h e Exterrial Control 01' Orgariizatioris. A Resoiirce

Dependence Perspective (Harper and Row, New York, 1978).

50. R. G. Bea, J Stntct . D i v Arn . Soc C i u . E n g . 106, 1835 (1980).
51. B. Le\.itt and J. G. March, Aririii. R e v . Sociol. 14, 319 (1988).
52. A. L. Stinchcombe and C. A. Heimer, Orgariizatiori Theory arid Project ~Mariu~gerrierit.

Adrniriisteririg Uncertainty iri .Vor~uegiari Ofsliore O i l (Norwegian Univ. Press, Oslo,
1985).

53. A. Tversky and D. Kahneman, Scierice 211, 453 (1981).
54. J . G. March and Z. Shapira, " h i a g e . Sci . 33, 1404 (1988).
55. Report N U R E G / C R - 0 4 W (USNRC, Washington, DC, 1978)
56. W. R. Freudenburg, Science 242, 44 (1988).
57. R. G. Bea, Oceariolo'qy Itit. (1975), p. 11.

Highly Parallel Computation

Highly parallel computing architectures are the only
means to achieve the computational rates demanded by
advanced scientific problems. A decade of research has
demonstrated the feasibility of such machines, and cur-
rent research focuses on which architectures are best
suited for particular classes of problems. The architec-
tures designated as MIMD and SIMD have produced the
best results to date; neither shows a decisive advantage for
most near-homogeneous scientific problems. For scien-
tific problems with many dissimilar parts, more specula-
tive architectures such as neural networks or data flow
may be needed.

C OMPUTATION HAS EMERGED AS AN IMPORTANT NEW
method in science. It gives access to solutions of hndamen-
tal problerns that pure analysis and pure experiment cannot

reach. ~ e r o s ~ a c e engineers, for example, estimate-that a complete
numerical simulation of an aircraft in flight could be performed in a
matter of hours on a supercomputer capable of sustaining at least 1
trillion floating point operations per skcond (teraflops, b r tflops).
Researchers in materials analysis, oil exploration, circuit design,
visual recognition, high-energy physics, cosmology, earthquake
prediction, atmospherics, oceanography, and other disciplines re-
port that breakthroughs are likely with machines that can compute
at a tflops rate.

The fastest workstations today operate at maximum speeds of
slightly beyond 10 million flops (10 megaflops, or mflops). In
contrast, the fastest supercomputers have peak rates in excess of 1
billion flops (gigaflops, or @lops)-for example, the NEC SX-2 is
rated at 1.0 gflops and the Cray Y-MP at 2.7 gflops. Even faster
computers are being designed: the four-processor NEC SX-3
(1990) will have a peak rate of 22 @lops and the Cray 4 (1992) 128
@lops. When recompiled for these machines, standard Fortran

P. J. Denning is a research fellow of the Research Institute for Advanced Computer
Science, National Aeronautics and Space Administration, Anles Research Center,
Moffett Field, CA 94035. W. F. Tichv is in the Computer Science Deparunent of the
University of Karlsruhe, Karlsruhe, Germany.

30 NOVEMBER 1990

programs typically realize 10 to 20% of the peak rate. When
algorithms are carefully redesigned for the machine architecture,
they realize 70 to 90% of the peak rate (1). There is an obvious
payoff in learning systematic ways to design algorithms for parallel
machines.

Bell anticipates that machines capable of 1 tflops and containing
thousands (or even millions) bf processors will be available as early
as 1995 (2). For example, IBM Research is developing the Vulcan
machine, which will consist of 32,768 (2 '7 50-mflops processors,
and Thinking Machines Corporation is considering a Connection
Machine with over a million (220) processors. These supermachines
map cost on the order of $50 million apiece. Bell anticipates that
low-cost, single-processor, reduced instruction set chips with speeds
on the order of 20 mflops will be common in workstations by 1995.
It is clear that tflops machines will be multicomputers consisting of
large numbers of processing elements (processor plus memory)
connected by a high-speed message exchange network. Smaller
multicomputers will proliferate in the next 5 years: we must learn to
program them.

Speed-up is a common measure of the performance gain from a
parallel processor. It is defined as the ratio of the time required to
complete the job with one processor to the time required to
complete the job with N processors (3). Perfect speed-up, a factor of
N, can be attained in one of two ways. In a machine where each
piece of the work is permanently assigned to its own processor,
perfect speed-up is attained only when the pieces are computational-
ly equal and processors experience no significant delays in exchang-
ing information. In a machine where work can be dynamically
assigned to available processors, it is attained as long as the number
of pieces of work ready for processing is at least N.

In discussing speed-up, it is important to distinguish between
problem size and computational work. Problem size measures the
number of elements in the data space, and computational work
measures the number of operations required to complete the
solution. For example, an N x N square matrix occupies N2 storage
locations, and it takes about N3 operations to form the product of
two of these matrices. If N is doubled, the storage requirement will
be multiplied by four and the computational work by eight.
Conversely, if the number of processors is doubled, two matrices of
dimension 26% larger than N can be multiplied in the same amount
of time. This has important consequences for multiprocessors: there

ARTICLES 1217

may be too few processors available to achieve speed-up that is linear
in problem size. The best we can achieve is speed-up that is linear in
the number of processors.

A study in 1988 at Sandia National Laboratory provided the first
case of near-perfect speed-up for three problems involving the
solutions of differential equations on a machine with 1024 proces-
sors (4). Later that year, Fox published a study of 84 parallel
algorithms reported in the scientific literature and concluded that
90% of them could be extrapolated to larger machines with speed-
ups proportional to the number of processors (5). These results give
considerable grounds for optimism about speed-up on other prob-
lems.

The central question of the early 1980s was whether parallel
computation would become practical. This question has been settled
and we have moved on to bigger questions. What are the best
parallel architectures for given classes of problems? How can we
partition a given problem into thousands of parts that can be
independently executed on different processors? How do we design
algorithms so that delays of interprocessor communication can be
kept to a small fraction of the computation time? How can we
design the parts so that the load can be distributed evenly over the
available processors? How can we design the algorithms so that the
number of processors is a parameter and the algoritlu~l can be
configured dynamically for the available machine? How can we
prove that a parallel algorithm on a given machine meets its
specifications.: How do we debug programs, especially when the
results of flawed parallel algorithms may not be precisely reproduc-
ible?

Multiprocessor Architectures
Multiprocessor computers suitable for parallel computation are

classified in three major dimensions:
1) Shared nzernory versus distributed nzernoyy. In a shared-memory

computer, each processor has access to all the computational
memory; in a distributed-memory computer, each has access only to
its local memory and must exchange messages with other processors
to obtain nonlocal data.

2) Coaue gvairl vcvsr4sjnc gvain. The unit of computational work
allocated to a processor is called a grain. In coarse mode, a grain
contains many data elements and, in fine mode, a grain contains one -
(or very few) data elements.

3) S I M D versus MIMD. In one form of multiprocessor, a control
processor broadcasts instructions one at a time to all the other
processors, and each of them applies the current instruction to the
data in its local memory. This mode is called SlMD for "single

u

instruction stream, multiple data streams." When each of the
processors is allowed to execute its own, separate program, the
mode is called LMIMD for "multiple instruction stream, multiple
data streams." These two designations are part of a taxonomy
proposed by Flvnn in 1972 (6) .

In the foilov\iing subsections, we comment on these distinctions.
Figure 1 shows four practical architectures that exemplifj them.

Inte~connection network. An important component of all multipro-
cessor architectures is the intercomlection network. It provides
paths by which processors can make requests to read, write, or lock
memory locations, or can exchange messages with other processors.
The interconnection network of a machine with thousands of
processors should satisfy four properties:

1) Full coririectivity. Any processor should be able to send a
message to any other processor. (Connectivity from virtual address-
ing is possible but untested in parallel machines.)

2) Pavallel message exchange. The nenvork should be capable of

handing requests from all processors simultaneously with minimal
delays from contention at switch points. There should be no
singular point in the network, such as the root of a tree or the hub of
a star, that is a bottleneck.

3) Shovt dinmete,. The longest path should be of lower order than
the number of processors (order of logN for N processors is
acceptable).

4) Scalable. The number of wires and switch points in the
nenvork should be of lower order than the square of the number of
processors (order of N IoglV for N processors is acceptable).

 many intercomlection networks satisfj these properties (7). One
of the simplest is the hypercube, which connects each of the N = 2k
processors to k others, has diameter k , and has wire and switch-point
growth proportional to RlogN (8).

Some multiprocessor computers use interconnection networks
that do not satisfy these properties but are cost eEective because the
number of processors is small. One is the shared bus (a data pathway
used by many devices), which can be used by only one processor at a
time; it fails on property 2 because when the number of processors
approaches 100 ill current designs, bus contention becomes so
severe that the bus saturates and limits the speed of the machine.
Examples of computers that use the shared bus are Sequent Symme-
try Computer and Encore Multimax. Another type of interconnec-
tion network is the crossbar switch, which provides every processor
with a path to every memory; it fails on property 4 because it
contains n'' switch points and becomes unwieldy for more than a
few hundred processors. Examples of computers that use it are Cray
X-MP and Cray Y-MP. In these computers, the crossbar switching
logic is distributed among the individual memory units.

Sha~ed vc~sus dist~ibuted rncmoyy. The shared memory architecture
was introduced by Burroughs in the B5000 machine in the late
1950s and is used today in machines such as the Sequent Symmetry
Computer and Encore ~Multimax. It gives all processors equal access
to all memories through the interconnection network. messages of

Conlroler

lnstrucl~on stream

-
t

1 lnlerconnecl~on network 1

i i
1 Interconnection network 1

t
f f f

. + I t

1 lnlerconnection network 1

D
I 4- Enabled ~nstrucl~ons

I t ? A

7 + t 1 1 I
Results -+

Fig. 1. Four computer architccturcs for parallel computation. Thc first thrcc
are in common use, and the fourth may become common by the end of thc
decade. (A) An SIMD machinc in which one control processor broadcasts a
stream of instructions to all data proccssors. Each instruction calls for an
operation on data in local memory or for an exchangc of data ovcr thc
interconnection nctwork. (B) An MIMD machinc in which processors
running distinct programs carry out operations on data in a set of memorics
shared by all of them. ALI processor-memory traffic passes through a high-
speed interconncction nenvork. (C) An LMILMD machinc in which proccssors
use local mcmory for most opcrations and occasionally exchange data over an
ultercolulection nenvork. (D) An LMILMD data flow machinc in which
instnlction packets in memory flow to the proccssors for execution when all
their operands are present; processors send results back, whcrc their arrivals
trigger new instnlctions for execution (P, processor; LM, mcmon).

SCIENCE, VOL. 250

any length can be exchanged in the fixed time required to exchange
the address of the message header. The distributed memory architec-
ture gives each processor direct access to only one memory unit, the
local memory; access to other data is gained by sending messages
through the interconnection network. Message exchange time is
proportional to message length. This approach is economical if local
accesses are more frequent than other accesses.

The strategy of designing algorithms for full sharing of all
memory by all processors has an important fundamental limitation.
Because individual memory modules can be accessed by only one
processor at a time, all but one of the processors seeking access to a
given module will be blocked for the duration of that module's cycle
time. Baskett and Smith showed that when N processors share
access to M memories, the fraction of processors blocked during
each memory cycle is approximately (9, 10)

For N = M , about 40% of the processors will be blocked. The
designers of the BBN Corporation's Monarch machine (65,536
processors and memories, 1-ps memory-cycle time) claim they can
reduce this number to as little as 10% by having two ports into every
memory (11).

The critical issue is the memory address pattern generated by each
processor. If most of a given processor's references are concentrated
in a small region of the address space, that region can be stored in a
fast local memory attached to the processor; blocking will be
negligible because interference will be limited to the few other
processors whose favored regions overlap (10). Because most paral-
lel algorithms can be designed to localize the reference patterns of
each processor, the distributed memory architecture will continue to
be favored by designers.

Coavse vevs;rsfine-gvairls. In analyzing parallel algorithms, we must
distinguish two disjoint ways a processor can spend its time. One is
computation, the time spent performing instructions. The other is
communication, the time spent sending, receiving, or waiting for
messages from other processors; communication time may vary
according to path length to the processor holding the data and it
may take 1 to 1000 instruction times or more per message.
Although all algorithms have communication time for input and
output, the communication time required to synchronize the parts
of a parallel algorithm is a cost that is not present in sequential
algorithms.

u

The computational utilization U; of a processor i is the fraction of
time that processor is executing computational instructions; thus,
1 - U; is the fraction of time that processor is executing communi-
cation instructions or waiting for messages. The speed-up attained
by a computation with N processors is at most U1 + U2 + . . . +
U N ; it may be less if portions of the computation are repeated in
several grains. The maximum speed-up of N will be achieved by an
algorithm in which the computational utilization of each processor
is near 1 and there is little redundant computation.

In many algorithms for physical problems, each processor is
assigned a region of space containing a cluster of points on the grid
over which the differential equations are solved. In a two-dimen-
sional grid, a square with k points on an edge will have computa-
tional work proportional to the number of points (that is, k2) and
communication work proportional to the perimeter (that is, 4k).
With k sufficiently large, the computational work will be large
com~ared to the communication work, which means that each U;
will be close to 1 and N such processors will produce nearly perfect
speed-up.

Now we see why grain size is important. The multiprocessor

architecture will determine the cost of a communication step relative
to a computation step. If the cost is high, the algorithm designer will
favor large grains containing many instructions for each message;
the number of subprograms will be a small function of the problem
size. If the cost is low, the algorithm designer can afford small
grains, and the number of grains will be proportional to problem
size. In specifying algorithms that will scale for larger machines,
designers tend to choose grain sizes at the point of diminishing
returns between computation and conlmunication; for this reason,
when given a machine with more processors, they use it for a larger
problem at the same grain size rather than for the same problem
with a smaller grain size (4).

The attraction of fine grains is that they afford the largest possible
amount of speed-up. They are practical in certain limited cases
today, most of-ten signal- and image-processing problems and
problems involving particle-tracing. Machines illustrating this are
the Connection Machine (12) and the GoodyearINational Aeronau-
tics and Space Administration (NASA) Massively Parallel Processor
(MPP) (13). In these cases, the machines are able to move a data
element between immediately neighboring processors in time com-
parable to the instruction time, and many computations over grids
of such elements will achieve individual processor computational
utilizations of 0.5 or greater at the finest grain.

SIMD vevslrs MIMD. A fundamental question in the design of
parallel algorithms is how to guarantee that, when a processor
executes an instruction, the operands of that instruction have already
been computed by previous instructions. Without this guarantee,
the results of the computation can be indeterminatedepending on
the relative speeds of the processors (race conditions). The mecha-
nism that provides this guarantee is called synchronization.

Synchronization is straightforward in standard sequential single-
processor machines, where instn~ctions are executed one at a time.
The results of each instruction are left in registers or in memory for
access by later instructions. Optimizing compilers for such machines
may exchange the order of instructions that do not provide data to
each other. A direct extension of this mode for multiprocessing
appears on machines of the SIMD type, where each instruction is
simultaneously obeyed by all the processors. For example, suppose
that a difference equation on a grid calls for averaging the values
at the four nearest neighbors of a point; the programming language
expression for the operation to be applied at point (i, j) would
read

On the SIMD machine, we can associate one data processor with
each point on the grid; its memory holds the value v(i, j) . The
control processor broadcasts the instructions implementing Eq. 2 to
all the data processors, which obey them using their own particular
values of i and j. Programs of this kind are easy to understand
because they look almost the same as their counterparts for a single-
processor machine. According to Hillis and Steele, the best way to
think of SIMD programming is as sequential progranming in
which each operation applies simultaneously to sets of data rather
than to individual data elements (14). It is impossible to program
races in SIMD algorithms.

Under the MIMD mode, each processor has its own separate
program of instructions to obey. The programs need not be
identical. Now the machine must provide explicit means for syn-
chronization. The hardware must supply bufers for passing mes-
sages between processors, flags to indicate the arrivals of signals and
messages, and instructions that stop and wait for the flags. The

30 NOVEMBER 1990 ARTICLES 1219

programmer must use these synchronization instructions where a
definite order of events must be established. For example, Ecl. 2
becomes

PUT (v, i - 1, j)

PUT (v, i + 1, j)

PUT (v, i, j - 1)

PUT (v, i, j + 1)

v = [GET (i - 1, j) + GET (i + 1, j) + GET (i, j - 1) +
GET (i, j + 1)]/4

where PUT sends a message containing the value of v to a
designated processor and GET waits until amessage is received from
a designated processor; a GET must match the corresponding PUT
on the sending processor. This increases the programming effort and
exposes the programmer to errors that arise when these new
operations are used improperly (for example, imagine if the four
PUT statements did not all precede the GETS).

The main limitation of the SIMD architecture is its restriction
that all processors must execute the same instruction. Even in highly
regular problems there are differences, such as the evaluation of
boundary conditions, that require different algorithms for some
processors than for others. he machine must-shut off boundary
processors while broadcasting the instructions for interior nodes,
and it must shut off interior processors while broadcasting instruc-
tions for boundarv nodes. The need to shut off some of the
processors lowers the utilization of the machine and the speed-up it
can attain. An MLMD architecture, which can execute the interior
and boundary algorithms in parallel, does not suffer from this
limitation.

Practical considerations. There are at least eight distinguishable
architectures corresponding to the various combinations of the
factors above. In in scientific computing only three of these
possibilities have been used: (i) MLMD coarse shared (Sequent,
Encore, Alliant, Convex, Cray); (ii) MIMD coarse distributed
[hypercubes (Intel, Ametek, NCube)]; and (iii) SIMD fine distrib-
uted (Connection Machine, MPP). There are two reasons for this.
First. the shared-memorv architecture has been of limited use in
large computations because fewer than 100 processors are enough
to saturate the common bus; such architectures do not extend to
thousands of processors. Moreover, there are no reported test cases
in which shared memory was a distinct advantage even when a small
number of processors was sufficient (5). Second, the grain size is
normally the consequence of the comnlunication structure of the
machine and the nonlocal referencing patterns of the algorithm.
MIMD machines to date have used coarse grains because synchroni-
zation costs would be too high with fine grains. Only the SLMD
architecnire has been successful with fine grains, and then only with
each processor having its own local memory.

The predominance of these three architecnire types today does
not mean that others are forever impractical. The data flow architec-
ture (see below) is capable of supporting fine-grain parallelism
within the MLMD mode and may become practical by the end of the
decade.

Neural networks can be used for special-purpose combinatorial
optimization and pattern recognition problems (15). They represent
another architectural type that can be used for highly parallel
computation. They are not of direct interest in the numerical
computations that predominate in computational science, but they
may be of indirect interest for ancillary combinatorial issues such as
generating grids and mapping grids to the nodes of a hypercube.

Problem Classes

For a wide range of scientific problems, at least one of the three
architectural types noted above works efficiently on highly parallel
computers (5). Fox has proposed a classification of problems into
three broad categories: synchronous, loosely synchronous, and
asynchronous (5). Synchronous problems are ones in which the
physical equations specify the behavior at every point in the data
space for every small increment of time. Loosely synchronous
problems are ones for which there are embedded time sequences
(renewal points) at which the physical equations specify the values
of the data elements; in benveen these times there is no global
specification of the data values in local regions of data space.
Asynchronous problems are all the rest. Fox says that most of the
results in the literature have been obtained for the first two classes of
problems and that we have not yet learned how to divide problems
into dissimilar pieces that can keep an MIMD machine busy.

Single-firtiction pvoblems. In many computational problems, a simple
procedure must be applied uniformly across a large number of data
elements organized within a data strucnire. We can specify the
procedure by a sequential algorithm in which each step is an
operation applied simultaneously to all the data elements. The
design of such "data-parallel" algorithms closely resembles ordinary
programming in languages such as Fortran or C.

Physical problems modeled by a set of differential equations are
common paradigms for data-parallel algorithms. The continuum
equations are modeled by a set of difference relations among
dependent quantities associated with points on a discrete grid. The
difference relations are usually the same for all points except the
boundaries. In a data-parallel algorithm, each grid point is assigned
its own processor that contains a program to evaluate the difference
relation. Because the difference relation depends only on the imme-
diately adjacent grid points, each processor need communicate only
with a small number of others in its neighborhood.

The class of problems amenable to data-parallel solution is by no
means limited to differential equation models. Other classes include:

1) Searchinf. Find data elements satisfying a given property. If
processors are as nunlerous as data elements, the search can be
completed in a constant amount of time independent of the data set
and the result can be reported in an additional logN time.

2) Sorting. Arrange a sequence of data elements in order. If
processors are as numerous as data elements, the sort can be
completed in time proportional to log2N on N processors.

3) Joiriirg tables in a database. Form a new table from two others
having a common column by combining a record from one table
with a record in the other whenever the nvo records have the same
value in the common column. This can be done in time proportional
to the size of the larger table if processors are numerous.

4) Computatiorialgeometvy. Find the convex hull of a set of points.
With A1 processors and N points, this can be done in average time
proportional to log2N.

5) Solving linear equations. Find the solution of a set of equations
of the matrix form Ax = b. With N processors and N unknowns, the
parallel Gauss-Jordan method obtains the solution in time propor-
tional to N2; with N2 processors, the time drops to N IogN.

6) Fast Fouviev tvansfovm. Find the one-dimensional Fourier trans-
form of a series of points. With N processors and N points, this can
be done in time proportional to IogN.

This list is merely suggestive; a large variety of subproblems that
comnlonly arise in computational libraries are data-parallel and are
subject to considerable speed-up on machines containing large
numbers of processors (16, 17).

Practical data-parallel algorithms must be designed to adapt to the
number of processors actually available. For example, 1 million data

SCIENCE. VOL. 250

elements can be searched by 1000 processor in time proportional to
log1000 by performing a binary search on the 1000 elements
allocated to each processor. Optimal combinations of sequential
and parallel components are open problems in parallel algorithm
design.

It is important to remember that data-parallel algorithms carmot
be universally guaranteed to keep all the processors busy all the time.
An illustration is an image-processing algorithm that operates in
two passes. On the first pass, the algorithm determines local features
of chunks of the image, and, on the second, it locates contours by
joining the local features across chunks. Processors assigned to
chunks having few features will also have little work to do. Because
the proportion of processors that can be kept busy is dependent on
the input data, one cannot expect that the speed-up will be
proportional to the number of processors.

Multiple-fitnction problems. Many computational problems involve
many functions composed together. Exanlples include finite element
analysis over nonhomogeneous rigid structures, multizone fluid-
flow calculations, circuit simulations, fluid flows in nonhomoge-
neous subterranean formations, and multidisciplinary models. The
solution of these problems does not rely on data-parallel computa-
tion; instead, it relies on a network of machines performing different
functions and exchanging data. They correspond to Fox's asynchro-
nous problems. Today, their algorithms commonly are written in C
or FORTRAN. Many researchers believe that process-oriented
languages such as Occam (18) and functional composition languages
such as VAL (19) or FP (20) would produce more precise descrip-
tions of algorithms for these problems.

Avclzitectuval matching. Single-function (data-parallel) problems are
well suited to the SIMD architecture, and mult ihction problems
are well suited to the MIMD architecture. A major impediment to
solving multifunction problems has been the lack of programming
languages that express functional composition easily. The main
barrier to the widespread use of such languages is culn~ral. The
scientific community has used Fortran for so many years that
programming with new languages will remain untried as long as the
scientific investigator sees no value to learning these languages. The
ability to express solutions to multifunction problems may be a
sufficient motivation for learning new languages.

Connection Machine
To make concrete the previous points about solving single-

function problems on an SIMD machine, we will consider the
architecture and programming of a particular SIMD machine, the
Connection Machine 2 (CM2) (Thinking Machines Corporation).

The CM2 is an SIMD computer with 65,536 (216) processors
connected in a 16-dimensional hypercube nenvork. Each processor
has 32 kilobytes of local memory; the entire primary memory of a
CM2 is 2 gigabytes (231 bytes). Collectively, the processors can be a
supercomputer that solves problems with data-parallel methods.

The CM2 cycles between intervals of instruction execution and
message exchange. At the start of an instruction interval, the control
processor broadcasts an instruction to all processors; the subset of
them that are enabled then execute that instruction using data in -
their local memories. During a message exchange interval, proces-
sors copy values required during the next instruction interval.
Compilers can determine the source and destination addresses of
these messages. If an algorithm uses many long paths in thc
network, the message interval can be 50 to 250 floating-point
instruction times, severely limiting the computational rate of the
machine.

The CM2 configures algorithms for the number of processors

Fig. 2. Experiments on a
-

Connection Machine re- 24 -
veal big differences in
performance and illus-

-

trate tradcoffs bet\vccn 20 -
storage requirements -

and running times on
parallel machines. The -16
paph S ~ O \ V S running ?2 1
tlmc for three algorithms -

for multiplying N x N < 12 -
matrices on a CM2 with a:
215 processors. Each
cunTe is labeled with its 8
asymptotic growth rate
in N. The upper cunTc is
for the standard scquen- 4
tial algoritt~m that takcs
time proportional to N3
using one processor. The 0
middle curve is an algo- 0 50 100 150 200 250
rithm that uses N3 pro- Matrix dimension (N)
ccssors and takcs timc
proportional to logN. The lower curve is an algorithm that computes cach of
the lv results on a separate processor; it takes timc proportional to N. The
discontinuities in the two lower curves result from the simulation of virtual
processors. For cach value of N = 32, 40, 50, 64, 80, 100, 128, . . . in the
middle curve the next stage of virtual processor simulation starts, with
respectively 2,4, 8, 16, 32,64, 128, . . . virtual processors per real processor;
at cach step the running timc doubles and at I\' = 256 the machine runs
completely out of memory. When N > 181 in the lower algorithm,
"? > 215, and the running time doubles for the same reason.

actually present through the method of virtual, or simulated,
processors. The programmer designs an algorithm just once, assum-
ing that the machine has the required number of processors. The
cohpiler assigns sets of the p r o g k e r ' s virtual processors to each
available processor on the CM2, and each processor simulates the
execution of all the virtual processors assigned to it. The maximum
number of virtual ~rocesso;~ is limited b d e available memorv. As
an example, we can assign a virtual processor to every point in a
1024 by 1024 image (220 points); each of the CM2's 216 processors
must simulate 16 v?rtual p;ocessors, each of which is limited to 1116
of the memory and l l l 6 t h e speed of a processor.

Programmers use standard languages (Lisp, Fortran, C) on the
CM2. We will review how standard control statements operate on
the CM2. Consider a selection statement of the form "IF C THEN
A ELSE B":

1) The control processor broadcasts the instructions that evaluate
the test C; at the end of this sequence, each processor contains the
value TRUE or FALSE. The control processor broadcasts an
instruction telling all processors containing FALSE to turn them-
selves off.

2) The control processor broadcasts the instructions for the
clause A; those instructions will be obeyed by the subset of
processors still on. At the completion of this sequence, the control
processor broadcasts an instruction telling all processors to reverse
their status between on and off.

3) The control Drocessor broadcasts the instructions for the
clause B; those instructions will be obeyed by the subset of
processors now on. At the completion of this sequence, the control
processor broadcasts an instruction telling all processors to turn
themselves on.

The CM2 implements the on- and off-status of processors with a
one-bit register per processor called the context flag. When the
context flag is FALSE, the associated data processor is off, and it
obeys only instructions that unconditionally manipulate context
flags.

An iteration statement such as "WHILE C D O A" works

30 NOVEMBER 1990 ARTICLES 1221

similarly. The control processor broadcasts the instructions of the
test C and then the command for all processors containing FALSE
to turn themselves off. It then broadcasts the instructions of A, and
only the processors still on execute it. This is repeated until all
processors have shut themselves off. Then the control processor
instructs them all to turn themselves on again.

Because the programming syntax for the CM2 is basically un-
changed from that of sequential machines, many algorithms can
easily be converted for the CM2. Unfortunately, many sequential
algorithms converted in such a straightforward, mechanical way are
not efficient for a parallel machine. This point is illustrated for
matrix multiplication (Fig. 2) (21). For this reason, much of the
research to date in algorithms for parallel machines has been a
complete rethinking that has produced some unexpectedly new
designs that do not resemble their counterparts for sequential
computers (16, 17, 21, 22).

Data Flow Computers
Data flow computers are the most practical form of MIMD fine-

grained parallel computers known. They limit the cost of synchroni-
zation and afford a high degree of parallelism by replacing control
flow with data flow. Under control flow, each processor has an
instruction pointer that designates which instructions are enabled
for execution. Under data flow, instructions become enabled for
execution by the arrival of required operands.

A data flow program consists of a set of instruction packets stored
in the memory of the data flow computer. An instruction packet is
disabled until all its required operands have arrived. Enabled
instruction packets are sent via a distribution network to an array of
processors where they are executed and their results distributed back
to instruction packets that await them. If a large number of
instruction packets are enabled, a data flow computer with a large
number of processors achieves high parallelism and high utilization.
A data flow computer can offer fine-grain parallelism because it can
exploit parallelism at the level of individual hc t ions , expressions,
and subexpressions (23).

Program statements that operate on arrays of data will achieve
high speed-ups on a data flow machine. Consider again the earlier
example of a computation over a grid of points v(i , j) . In a data flow
computer, all the assignment instructions for all the grid points
would be enabled in parallel; each would await four operands
generated by its four neighbors and would then produce a new
result. The speed of the machine would be directly proportional to
N / M for N grid points and IM processors. These findings were
confirmed by a study we performed jointly with NASA and the
Defense Advanced Research Projects Agency (DARPA) in 1984
(24). Benchmark studies on a prototype data flow computer at the
University of Manchester have indicated that many sequential
programs can also keep all the processors of a data flow computer
busy (25).

A data flow computer automatically solves the problem of
assigning virtual processors (here, instruction packets) to the real
processors of the machine: as soon as a virtual processor is enabled
by the arrival of needed operands, it is sent to a real processor for
execution. Although the ratio of computation to communication
time per virtual processor may be low (0.01 to 0.1), utilization of
the machine can nevertheless be close to 1 if the program has
enough instructions enabled at the same time.

Aside from a few university and commercial prototypes, no
serious commercial data flow machine is available. There are several
reasons for this. The SIMD machine is simpler to build and can be
programmed within familiar language concepts; the data flow

machine requires new languages and new compiling technologies
based on unfamiliar concepts (19). The SIMD machine uses a
hypercube interconnection network, which is cheap to build; the
data flow machine depends on a high-speed packet-switched net-
work, a technology that is only now becoming inexpensive.

Some researchers are studying data flow languages as source
languages for SIMD architectures. Experience with these languages
will benefit the programming of all parallel machines.

Conclusions
The sequential computer has been the dominant paradigm since

the first ENIAC was brought on-line in 1946. We are fast approach-
ing the physical limits of this technology while our computational
needs continue to grow. After two decades of experimentation,
successful computers containing thousands of processors operating
in parallel have been built and are for sale in the market, and early
experience with these machines in practice has been highly encour-
aging. Many challenges lie ahead in computer architecture, algo-
rithms, programming languages, compilers, operating systems, per-
formance evaluation, software engineering, and the vast number of
applications of parallel computation.

The new breed of massively parallel machines will, in the long
run, have an impact as profound as microcomputers. These ma-
chines are forcing us to rethink our approaches to algorithms: any
technology that brings about a change in the manner of organizing
work will have far-reaching effects.

REFERENCES AND NOTES

1. J. J. Dongarra, Compiri. Architect. News 16, 47 (1988).
2. G. Bell, Commirti. A C M 32, 1091 (1989).
3. A. H. Karp and H. P. Flatt, ibid. 33, 539 (1990).
4. J. Gustafson, G. ~ M o n q , R. Benner, S I A M j. Sci. Stat Cotnprrt. 9, 1 (1988).
5. G. C. Fox, in Hypercrrbe Corrcuwent Cornpirteri arrd Applicatrorri (ACIM Press, New

York, 1988), pp. 897-955.
6. IM. J. Flynn, IEEE Trans Cortiprrt. C-21, 948 (1972).
7. H. J. Siegel, Iritercotinectioti !Vetworbf;~r Laye-Scale Parallel Pmcessrtig: Tlieory arid Case

Silrdies (Lexinmon Books. Lexlnmon. MA. 1985). , ,
8. P. J. Dinnin; Arn. Sci. 75, 23<(1987).
9. F. Baskett and A. J . Smith, Commrrr~. ACIM 19, 327 (1976).

10. P. J . Denning, A m Sci. 74, 126 (1986).
11. R. D. Rettberg, W. R. Crowther, P. P. Carey, R. S. Tomlinson, IEEE Trans.

Comprri. 23, 1 g (1990).
12. D. Hlllis, The Corrnectior~ ~Mackine (LMIT Press, Canlbridge, MA, 1985).
13. J. R. F~scher, Ed., Fror~iiers oJ~Maiiively Parallel Scierrtlfic Compuiatior~, Proceedings of

symposium at NASA Goddard Space Flight Center, Greenbelt, LMD, 24 and 25
September 1986 (NASA C o d Publ. 2478, NASA, Washington, DC, 1986).

14. D. Hillis and G. Steele, Cornmrrn. A C M 12, 1170 (1986).
15. J. J. Hopfield and D. W. Tank, Screrrce 233, 625 (1986).
16. S. G. Akl, The D E S ! ~ H and Analysri qfParalle1 Algorithms (Prentice-Hall, Englewood

Cliffs, NJ, 1989).
17. A. Gibbons and W. Rytter, Eficierri Pamllel A!qorithmi (Canlbridge Univ. Press,

New York, 1988).
18. IMIOS, Ltd., Occnrrr Pri;fmmmir\q Mnrrrral (Prentice-Hall, Englewood CliEs, NJ,

1984).
19. J. R. McGraw, A C M Trnrrr. Pri;qmm Larg Syri. 4 , 44 (1982).
20. J. Backus, Comrnrrr~. ACIM 21, 613 (1978).
21. W. F. Tichy, Itril. 1. High Speed Cortipui. 2 (1989).
22. H. D. Simon, Ed., Scierit$c Applrcaiiorrs qfthe Connectron Machirre (World Scientific,

Singapore, 1989).
23. K. Hwang and F. A. Briggs, Cornprrter Architecture arid Parnllel Processrri,f (McGraw-

Hill, New York, 1984), pp. 748-768.
24. G. B. Adams 111, R. L. Brown, P. J. Denning (Research Institute for Advanced

Computer Science, NASA Ames Research Center, Technical Report TR-85.2,
~Mofett Field, CA, 1985). In this study, seven NASA teams progranlmed the
~Massachusetts Institute of Technology static data flow machine wlth kernel
problems from their scientific domains. The machine was still in design and not
implemented. Five of the seven teams concluded they could keep all 256 processors
busy and achieve the full 1.28 @lops by the design. The nvo others concluded that
a scaled-down version of the machine (16 processors) would be adequate. Weak
aspects of the design were uncovered and slated for improvement.

25. J. R. Gurd, C. C. Kirkham, I. Watson, Cornmrrn. A C M 28, 34 (1985).
26. Work repotted herein was suppotted under Cooperative Agreement NCCC2-387

benveen NASA and the Universities Space Research Association.

1222 SCIENCE, VOL. 250

