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Highly Parallel Computation 

Highly parallel computing architectures are the only 
means to achieve the computational rates demanded by 
advanced scientific problems. A decade of research has 
demonstrated the feasibility of such machines, and cur- 
rent research focuses on which architectures are best 
suited for particular classes of problems. The architec- 
tures designated as MIMD and SIMD have produced the 
best results to date; neither shows a decisive advantage for 
most near-homogeneous scientific problems. For scien- 
tific problems with many dissimilar parts, more specula- 
tive architectures such as neural networks or data flow 
may be needed. 

C OMPUTATION HAS EMERGED AS AN IMPORTANT NEW 
method in science. It gives access to solutions of hndamen- 
tal problerns that pure analysis and pure experiment cannot 

reach. ~ e r o s ~ a c e  engineers, for example, estimate-that a complete 
numerical simulation of an aircraft in flight could be performed in a 
matter of hours on a supercomputer capable of sustaining at least 1 
trillion floating point operations per skcond (teraflops, b r  tflops). 
Researchers in materials analysis, oil exploration, circuit design, 
visual recognition, high-energy physics, cosmology, earthquake 
prediction, atmospherics, oceanography, and other disciplines re- 
port that breakthroughs are likely with machines that can compute 
at a tflops rate. 

The fastest workstations today operate at maximum speeds of 
slightly beyond 10 million flops (10 megaflops, or mflops). In 
contrast, the fastest supercomputers have peak rates in excess of 1 
billion flops (gigaflops, or @lops)-for example, the NEC SX-2 is 
rated at 1.0 gflops and the Cray Y-MP at 2.7 gflops. Even faster 
computers are being designed: the four-processor NEC SX-3 
(1990) will have a peak rate of 22 @lops and the Cray 4 (1992) 128 
@lops. When recompiled for these machines, standard Fortran 
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programs typically realize 10 to 20% of the peak rate. When 
algorithms are carefully redesigned for the machine architecture, 
they realize 70 to 90% of the peak rate (1). There is an obvious 
payoff in learning systematic ways to design algorithms for parallel 
machines. 

Bell anticipates that machines capable of 1 tflops and containing 
thousands (or even millions) bf processors will be available as early 
as 1995 (2). For example, IBM Research is developing the Vulcan 
machine, which will consist of 32,768 (2 '7  50-mflops processors, 
and Thinking Machines Corporation is considering a Connection 
Machine with over a million (220) processors. These supermachines 
map cost on the order of $50 million apiece. Bell anticipates that 
low-cost, single-processor, reduced instruction set chips with speeds 
on the order of 20 mflops will be common in workstations by 1995. 
It is clear that tflops machines will be multicomputers consisting of 
large numbers of processing elements (processor plus memory) 
connected by a high-speed message exchange network. Smaller 
multicomputers will proliferate in the next 5 years: we must learn to 
program them. 

Speed-up is a common measure of the performance gain from a 
parallel processor. It is defined as the ratio of the time required to 
complete the job with one processor to the time required to 
complete the job with N processors (3). Perfect speed-up, a factor of 
N, can be attained in one of two ways. In a machine where each 
piece of the work is permanently assigned to its own processor, 
perfect speed-up is attained only when the pieces are computational- 
ly equal and processors experience no significant delays in exchang- 
ing information. In a machine where work can be dynamically 
assigned to available processors, it is attained as long as the number 
of pieces of work ready for processing is at least N. 

In discussing speed-up, it is important to distinguish between 
problem size and computational work. Problem size measures the 
number of elements in the data space, and computational work 
measures the number of operations required to complete the 
solution. For example, an N x N square matrix occupies N2 storage 
locations, and it takes about N3 operations to form the product of 
two of these matrices. If N is doubled, the storage requirement will 
be multiplied by four and the computational work by eight. 
Conversely, if the number of processors is doubled, two matrices of 
dimension 26% larger than N can be multiplied in the same amount 
of time. This has important consequences for multiprocessors: there 
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may be too few processors available to achieve speed-up that is linear 
in problem size. The best we can achieve is speed-up that is linear in 
the number of processors. 

A study in 1988 at Sandia National Laboratory provided the first 
case of near-perfect speed-up for three problems involving the 
solutions of differential equations on a machine with 1024 proces- 
sors (4). Later that year, Fox published a study of 84 parallel 
algorithms reported in the scientific literature and concluded that 
90% of them could be extrapolated to larger machines with speed- 
ups proportional to the number of processors (5). These results give 
considerable grounds for optimism about speed-up on other prob- 
lems. 

The central question of the early 1980s was whether parallel 
computation would become practical. This question has been settled 
and we have moved on to bigger questions. What are the best 
parallel architectures for given classes of problems? How can we 
partition a given problem into thousands of parts that can be 
independently executed on different processors? How do we design 
algorithms so that delays of interprocessor communication can be 
kept to a small fraction of the computation time? How can we 
design the parts so that the load can be distributed evenly over the 
available processors? How can we design the algorithms so that the 
number of processors is a parameter and the algoritlu~l can be 
configured dynamically for the available machine? How can we 
prove that a parallel algorithm on a given machine meets its 
specifications.: How do we debug programs, especially when the 
results of flawed parallel algorithms may not be precisely reproduc- 
ible? 

Multiprocessor Architectures 
Multiprocessor computers suitable for parallel computation are 

classified in three major dimensions: 
1) Shared nzernory versus distributed nzernoyy. In a shared-memory 

computer, each processor has access to all the computational 
memory; in a distributed-memory computer, each has access only to 
its local memory and must exchange messages with other processors 
to obtain nonlocal data. 

2) Coaue gvairl vcvsr4sjnc gvain. The unit of computational work 
allocated to a processor is called a grain. In coarse mode, a grain 
contains many data elements and, in fine mode, a grain contains one - 
(or very few) data elements. 

3) S I M D  versus MIMD. In one form of multiprocessor, a control 
processor broadcasts instructions one at a time to all the other 
processors, and each of them applies the current instruction to the 
data in its local memory. This mode is called SlMD for "single 

u 

instruction stream, multiple data streams." When each of the 
processors is allowed to execute its own, separate program, the 
mode is called LMIMD for "multiple instruction stream, multiple 
data streams." These two designations are part of a taxonomy 
proposed by Flvnn in 1972 ( 6 ) .  

In the foilov\iing subsections, we comment on these distinctions. 
Figure 1 shows four practical architectures that exemplifj them. 

Inte~connection network. An important component of all multipro- 
cessor architectures is the intercomlection network. It provides 
paths by which processors can make requests to read, write, or lock 
memory locations, or can exchange messages with other processors. 
The interconnection network of a machine with thousands of 
processors should satisfy four properties: 

1) Full coririectivity. Any processor should be able to send a 
message to any other processor. (Connectivity from virtual address- 
ing is possible but untested in parallel machines.) 

2) Pavallel message exchange. The nenvork should be capable of 

handing requests from all processors simultaneously with minimal 
delays from contention at switch points. There should be no 
singular point in the network, such as the root of a tree or the hub of 
a star, that is a bottleneck. 

3) Shovt dinmete,. The longest path should be of lower order than 
the number of processors (order of logN for N processors is 
acceptable). 

4) Scalable. The number of wires and switch points in the 
nenvork should be of lower order than the square of the number of 
processors (order of N IoglV for N processors is acceptable). 

 many intercomlection networks satisfj these properties (7). One 
of the simplest is the hypercube, which connects each of the N = 2k 
processors to k others, has diameter k ,  and has wire and switch-point 
growth proportional to RlogN (8). 

Some multiprocessor computers use interconnection networks 
that do not satisfy these properties but are cost eEective because the 
number of processors is small. One is the shared bus (a data pathway 
used by many devices), which can be used by only one processor at a 
time; it fails on property 2 because when the number of processors 
approaches 100 ill current designs, bus contention becomes so 
severe that the bus saturates and limits the speed of the machine. 
Examples of computers that use the shared bus are Sequent Symme- 
try Computer and Encore Multimax. Another type of interconnec- 
tion network is the crossbar switch, which provides every processor 
with a path to every memory; it fails on property 4 because it 
contains n'' switch points and becomes unwieldy for more than a 
few hundred processors. Examples of computers that use it are Cray 
X-MP and Cray Y-MP. In these computers, the crossbar switching 
logic is distributed among the individual memory units. 

Sha~ed vc~sus dist~ibuted rncmoyy. The shared memory architecture 
was introduced by Burroughs in the B5000 machine in the late 
1950s and is used today in machines such as the Sequent Symmetry 
Computer and Encore ~Multimax. It gives all processors equal access 
to all memories through the interconnection network.  messages of 
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Fig. 1. Four computer architccturcs for parallel computation. Thc first thrcc 
are in common use, and the fourth may become common by the end of thc 
decade. (A) An SIMD machinc in which one control processor broadcasts a 
stream of instructions to all data proccssors. Each instruction calls for an 
operation on data in local memory or for an exchangc of data ovcr thc 
interconnection nctwork. (B) An MIMD machinc in which processors 
running distinct programs carry out operations on data in a set of memorics 
shared by all of them. ALI processor-memory traffic passes through a high- 
speed interconncction nenvork. (C) An LMILMD machinc in which proccssors 
use local mcmory for most opcrations and occasionally exchange data over an 
ultercolulection nenvork. (D) An LMILMD data flow machinc in which 
instnlction packets in memory flow to the proccssors for execution when all 
their operands are present; processors send results back, whcrc their arrivals 
trigger new instnlctions for execution (P, processor; LM, mcmon).  
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any length can be exchanged in the fixed time required to exchange 
the address of the message header. The distributed memory architec- 
ture gives each processor direct access to only one memory unit, the 
local memory; access to other data is gained by sending messages 
through the interconnection network. Message exchange time is 
proportional to message length. This approach is economical if local 
accesses are more frequent than other accesses. 

The strategy of designing algorithms for full sharing of all 
memory by all processors has an important fundamental limitation. 
Because individual memory modules can be accessed by only one 
processor at a time, all but one of the processors seeking access to a 
given module will be blocked for the duration of that module's cycle 
time. Baskett and Smith showed that when N processors share 
access to M memories, the fraction of processors blocked during 
each memory cycle is approximately (9, 10) 

For N = M ,  about 40% of the processors will be blocked. The 
designers of the BBN Corporation's Monarch machine (65,536 
processors and memories, 1-ps memory-cycle time) claim they can 
reduce this number to as little as 10% by having two ports into every 
memory (11). 

The critical issue is the memory address pattern generated by each 
processor. If most of a given processor's references are concentrated 
in a small region of the address space, that region can be stored in a 
fast local memory attached to the processor; blocking will be 
negligible because interference will be limited to the few other 
processors whose favored regions overlap (10). Because most paral- 
lel algorithms can be designed to localize the reference patterns of 
each processor, the distributed memory architecture will continue to 
be favored by designers. 

Coavse vevs;rsfine-gvairls. In analyzing parallel algorithms, we must 
distinguish two disjoint ways a processor can spend its time. One is 
computation, the time spent performing instructions. The other is 
communication, the time spent sending, receiving, or waiting for 
messages from other processors; communication time may vary 
according to path length to the processor holding the data and it 
may take 1 to 1000 instruction times or more per message. 
Although all algorithms have communication time for input and 
output, the communication time required to synchronize the parts 
of a parallel algorithm is a cost that is not present in sequential 
algorithms. 

u 

The computational utilization U; of a processor i is the fraction of 
time that processor is executing computational instructions; thus, 
1 - U; is the fraction of time that processor is executing communi- 
cation instructions or waiting for messages. The speed-up attained 
by a computation with N processors is at most U1 + U2 + . . . + 
U N ;  it may be less if portions of the computation are repeated in 
several grains. The maximum speed-up of N will be achieved by an 
algorithm in which the computational utilization of each processor 
is near 1 and there is little redundant computation. 

In many algorithms for physical problems, each processor is 
assigned a region of space containing a cluster of points on the grid 
over which the differential equations are solved. In a two-dimen- 
sional grid, a square with k points on an edge will have computa- 
tional work proportional to the number of points (that is, k2) and 
communication work proportional to the perimeter (that is, 4k). 
With k sufficiently large, the computational work will be large 
com~ared to the communication work, which means that each U; 
will be close to 1 and N such processors will produce nearly perfect 
speed-up. 

Now we see why grain size is important. The multiprocessor 

architecture will determine the cost of a communication step relative 
to a computation step. If the cost is high, the algorithm designer will 
favor large grains containing many instructions for each message; 
the number of subprograms will be a small function of the problem 
size. If the cost is low, the algorithm designer can afford small 
grains, and the number of grains will be proportional to problem 
size. In specifying algorithms that will scale for larger machines, 
designers tend to choose grain sizes at the point of diminishing 
returns between computation and conlmunication; for this reason, 
when given a machine with more processors, they use it for a larger 
problem at the same grain size rather than for the same problem 
with a smaller grain size (4). 

The attraction of fine grains is that they afford the largest possible 
amount of speed-up. They are practical in certain limited cases 
today, most of-ten signal- and image-processing problems and 
problems involving particle-tracing. Machines illustrating this are 
the Connection Machine (12) and the GoodyearINational Aeronau- 
tics and Space Administration (NASA) Massively Parallel Processor 
(MPP) (13). In these cases, the machines are able to move a data 
element between immediately neighboring processors in time com- 
parable to the instruction time, and many computations over grids 
of such elements will achieve individual processor computational 
utilizations of 0.5 or greater at the finest grain. 

SIMD vevslrs MIMD. A fundamental question in the design of 
parallel algorithms is how to guarantee that, when a processor 
executes an instruction, the operands of that instruction have already 
been computed by previous instructions. Without this guarantee, 
the results of the computation can be indeterminatedepending on 
the relative speeds of the processors (race conditions). The mecha- 
nism that provides this guarantee is called synchronization. 

Synchronization is straightforward in standard sequential single- 
processor machines, where instn~ctions are executed one at a time. 
The results of each instruction are left in registers or in memory for 
access by later instructions. Optimizing compilers for such machines 
may exchange the order of instructions that do not provide data to 
each other. A direct extension of this mode for multiprocessing 
appears on machines of the SIMD type, where each instruction is 
simultaneously obeyed by all the processors. For example, suppose 
that a difference equation on a grid calls for averaging the values 
at the four nearest neighbors of a point; the programming language 
expression for the operation to be applied at point (i, j) would 
read 

On the SIMD machine, we can associate one data processor with 
each point on the grid; its memory holds the value v(i, j ) .  The 
control processor broadcasts the instructions implementing Eq. 2 to 
all the data processors, which obey them using their own particular 
values of i and j. Programs of this kind are easy to understand 
because they look almost the same as their counterparts for a single- 
processor machine. According to Hillis and Steele, the best way to 
think of SIMD programming is as sequential progranming in 
which each operation applies simultaneously to sets of data rather 
than to individual data elements (14). It is impossible to program 
races in SIMD algorithms. 

Under the MIMD mode, each processor has its own separate 
program of instructions to obey. The programs need not be 
identical. Now the machine must provide explicit means for syn- 
chronization. The hardware must supply bufers for passing mes- 
sages between processors, flags to indicate the arrivals of signals and 
messages, and instructions that stop and wait for the flags. The 
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programmer must use these synchronization instructions where a 
definite order of events must be established. For example, Ecl. 2 
becomes 

PUT (v, i - 1, j) 

PUT (v, i + 1, j) 

PUT (v, i, j - 1) 

PUT (v, i, j + 1) 

v = [GET (i - 1, j) + GET (i + 1, j) + GET (i, j - 1) + 
GET (i, j + 1)]/4 

where PUT sends a message containing the value of v to a 
designated processor and GET waits until amessage is received from 
a designated processor; a GET must match the corresponding PUT 
on the sending processor. This increases the programming effort and 
exposes the programmer to errors that arise when these new 
operations are used improperly (for example, imagine if the four 
PUT statements did not all precede the GETS). 

The main limitation of the SIMD architecture is its restriction 
that all processors must execute the same instruction. Even in highly 
regular problems there are differences, such as the evaluation of 
boundary conditions, that require different algorithms for some 
processors than for others.   he machine must-shut off boundary 
processors while broadcasting the instructions for interior nodes, 
and it must shut off interior processors while broadcasting instruc- 
tions for boundarv nodes. The need to shut off some of the 
processors lowers the utilization of the machine and the speed-up it 
can attain. An MLMD architecture, which can execute the interior 
and boundary algorithms in parallel, does not suffer from this 
limitation. 

Practical considerations. There are at least eight distinguishable 
architectures corresponding to the various combinations of the 
factors above. In in scientific computing only three of these 
possibilities have been used: (i) MLMD coarse shared (Sequent, 
Encore, Alliant, Convex, Cray); (ii) MIMD coarse distributed 
[hypercubes (Intel, Ametek, NCube)]; and (iii) SIMD fine distrib- 
uted (Connection Machine, MPP). There are two reasons for this. 
First. the shared-memorv architecture has been of limited use in 
large computations because fewer than 100 processors are enough 
to saturate the common bus; such architectures do not extend to 
thousands of processors. Moreover, there are no reported test cases 
in which shared memory was a distinct advantage even when a small 
number of processors was sufficient (5). Second, the grain size is 
normally the consequence of the comnlunication structure of the 
machine and the nonlocal referencing patterns of the algorithm. 
MIMD machines to date have used coarse grains because synchroni- 
zation costs would be too high with fine grains. Only the SLMD 
architecnire has been successful with fine grains, and then only with 
each processor having its own local memory. 

The predominance of these three architecnire types today does 
not mean that others are forever impractical. The data flow architec- 
ture (see below) is capable of supporting fine-grain parallelism 
within the MLMD mode and may become practical by the end of the 
decade. 

Neural networks can be used for special-purpose combinatorial 
optimization and pattern recognition problems (15). They represent 
another architectural type that can be used for highly parallel 
computation. They are not of direct interest in the numerical 
computations that predominate in computational science, but they 
may be of indirect interest for ancillary combinatorial issues such as 
generating grids and mapping grids to the nodes of a hypercube. 

Problem Classes 

For a wide range of scientific problems, at least one of the three 
architectural types noted above works efficiently on highly parallel 
computers (5). Fox has proposed a classification of problems into 
three broad categories: synchronous, loosely synchronous, and 
asynchronous (5). Synchronous problems are ones in which the 
physical equations specify the behavior at every point in the data 
space for every small increment of time. Loosely synchronous 
problems are ones for which there are embedded time sequences 
(renewal points) at which the physical equations specify the values 
of the data elements; in benveen these times there is no global 
specification of the data values in local regions of data space. 
Asynchronous problems are all the rest. Fox says that most of the 
results in the literature have been obtained for the first two classes of 
problems and that we have not yet learned how to divide problems 
into dissimilar pieces that can keep an MIMD machine busy. 

Single-firtiction pvoblems. In many computational problems, a simple 
procedure must be applied uniformly across a large number of data 
elements organized within a data strucnire. We can specify the 
procedure by a sequential algorithm in which each step is an 
operation applied simultaneously to all the data elements. The 
design of such "data-parallel" algorithms closely resembles ordinary 
programming in languages such as Fortran or C. 

Physical problems modeled by a set of differential equations are 
common paradigms for data-parallel algorithms. The continuum 
equations are modeled by a set of difference relations among 
dependent quantities associated with points on a discrete grid. The 
difference relations are usually the same for all points except the 
boundaries. In a data-parallel algorithm, each grid point is assigned 
its own processor that contains a program to evaluate the difference 
relation. Because the difference relation depends only on the imme- 
diately adjacent grid points, each processor need communicate only 
with a small number of others in its neighborhood. 

The class of problems amenable to data-parallel solution is by no 
means limited to differential equation models. Other classes include: 

1) Searchinf. Find data elements satisfying a given property. If 
processors are as nunlerous as data elements, the search can be 
completed in a constant amount of time independent of the data set 
and the result can be reported in an additional logN time. 

2) Sorting. Arrange a sequence of data elements in order. If 
processors are as numerous as data elements, the sort can be 
completed in time proportional to log2N on N processors. 

3) Joiriirg tables in a database. Form a new table from two others 
having a common column by combining a record from one table 
with a record in the other whenever the nvo records have the same 
value in the common column. This can be done in time proportional 
to the size of the larger table if processors are numerous. 

4) Computatiorialgeometvy. Find the convex hull of a set of points. 
With A1 processors and N points, this can be done in average time 
proportional to log2N. 

5) Solving linear equations. Find the solution of a set of equations 
of the matrix form Ax = b. With N processors and N unknowns, the 
parallel Gauss-Jordan method obtains the solution in time propor- 
tional to N2; with N2 processors, the time drops to N IogN. 

6) Fast Fouviev tvansfovm. Find the one-dimensional Fourier trans- 
form of a series of points. With N processors and N points, this can 
be done in time proportional to IogN. 

This list is merely suggestive; a large variety of subproblems that 
comnlonly arise in computational libraries are data-parallel and are 
subject to considerable speed-up on machines containing large 
numbers of processors (16, 17). 

Practical data-parallel algorithms must be designed to adapt to the 
number of processors actually available. For example, 1 million data 
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elements can be searched by 1000 processor in time proportional to 
log1000 by performing a binary search on the 1000 elements 
allocated to each processor. Optimal combinations of sequential 
and parallel components are open problems in parallel algorithm 
design. 

It is important to remember that data-parallel algorithms carmot 
be universally guaranteed to keep all the processors busy all the time. 
An illustration is an image-processing algorithm that operates in 
two passes. On the first pass, the algorithm determines local features 
of chunks of the image, and, on the second, it locates contours by 
joining the local features across chunks. Processors assigned to 
chunks having few features will also have little work to do. Because 
the proportion of processors that can be kept busy is dependent on 
the input data, one cannot expect that the speed-up will be 
proportional to the number of processors. 

Multiple-fitnction problems. Many computational problems involve 
many functions composed together. Exanlples include finite element 
analysis over nonhomogeneous rigid structures, multizone fluid- 
flow calculations, circuit simulations, fluid flows in nonhomoge- 
neous subterranean formations, and multidisciplinary models. The 
solution of these problems does not rely on data-parallel computa- 
tion; instead, it relies on a network of machines performing different 
functions and exchanging data. They correspond to Fox's asynchro- 
nous problems. Today, their algorithms commonly are written in C 
or FORTRAN. Many researchers believe that process-oriented 
languages such as Occam (18) and functional composition languages 
such as VAL (19) or FP (20) would produce more precise descrip- 
tions of algorithms for these problems. 

Avclzitectuval matching. Single-function (data-parallel) problems are 
well suited to the SIMD architecture, and mult ihction problems 
are well suited to the MIMD architecture. A major impediment to 
solving multifunction problems has been the lack of programming 
languages that express functional composition easily. The main 
barrier to the widespread use of such languages is culn~ral. The 
scientific community has used Fortran for so many years that 
programming with new languages will remain untried as long as the 
scientific investigator sees no value to learning these languages. The 
ability to express solutions to multifunction problems may be a 
sufficient motivation for learning new languages. 

Connection Machine 
To make concrete the previous points about solving single- 

function problems on an SIMD machine, we will consider the 
architecture and programming of a particular SIMD machine, the 
Connection Machine 2 (CM2) (Thinking Machines Corporation). 

The CM2 is an SIMD computer with 65,536 (216) processors 
connected in a 16-dimensional hypercube nenvork. Each processor 
has 32 kilobytes of local memory; the entire primary memory of a 
CM2 is 2 gigabytes (231 bytes). Collectively, the processors can be a 
supercomputer that solves problems with data-parallel methods. 

The CM2 cycles between intervals of instruction execution and 
message exchange. At the start of an instruction interval, the control 
processor broadcasts an instruction to all processors; the subset of 
them that are enabled then execute that instruction using data in - 
their local memories. During a message exchange interval, proces- 
sors copy values required during the next instruction interval. 
Compilers can determine the source and destination addresses of 
these messages. If an algorithm uses many long paths in thc 
network, the message interval can be 50 to 250 floating-point 
instruction times, severely limiting the computational rate of the 
machine. 

The CM2 configures algorithms for the number of processors 
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using one processor. The 0 
middle curve is an algo- 0 50 100 150 200 250 
rithm that uses N3 pro- Matrix dimension (N) 
ccssors and takcs timc 
proportional to logN. The lower curve is an algorithm that computes cach of 
the lv results on a separate processor; it takes timc proportional to N. The 
discontinuities in the two lower curves result from the simulation of virtual 
processors. For cach value of N = 32, 40, 50, 64, 80, 100, 128, . . . in the 
middle curve the next stage of virtual processor simulation starts, with 
respectively 2,4, 8, 16, 32,64, 128, . . . virtual processors per real processor; 
at cach step the running timc doubles and at I\' = 256 the machine runs 
completely out of memory. When N > 181 in the lower algorithm, 
"? > 215, and the running time doubles for the same reason. 

actually present through the method of virtual, or simulated, 
processors. The programmer designs an algorithm just once, assum- 
ing that the machine has the required number of processors. The 
cohpiler assigns sets of the p r o g k e r ' s  virtual processors to each 
available processor on the CM2, and each processor simulates the 
execution of all the virtual processors assigned to it. The maximum 
number of virtual ~rocesso;~ is limited b d e  available memorv. As 
an example, we can assign a virtual processor to every point in a 
1024 by 1024 image (220 points); each of the CM2's 216 processors 
must simulate 16 v?rtual p;ocessors, each of which is limited to 1116 
of the memory and l l l 6 t h e  speed of a processor. 

Programmers use standard languages (Lisp, Fortran, C) on the 
CM2. We will review how standard control statements operate on 
the CM2. Consider a selection statement of the form "IF C THEN 
A ELSE B": 

1) The control processor broadcasts the instructions that evaluate 
the test C; at the end of this sequence, each processor contains the 
value TRUE or FALSE. The control processor broadcasts an 
instruction telling all processors containing FALSE to turn them- 
selves off. 

2) The control processor broadcasts the instructions for the 
clause A; those instructions will be obeyed by the subset of 
processors still on. At the completion of this sequence, the control 
processor broadcasts an instruction telling all processors to reverse 
their status between on and off. 

3) The control Drocessor broadcasts the instructions for the 
clause B; those instructions will be obeyed by the subset of 
processors now on. At the completion of this sequence, the control 
processor broadcasts an instruction telling all processors to turn 
themselves on. 

The CM2 implements the on- and off-status of processors with a 
one-bit register per processor called the context flag. When the 
context flag is FALSE, the associated data processor is off, and it 
obeys only instructions that unconditionally manipulate context 
flags. 

An iteration statement such as "WHILE C D O  A" works 

30 NOVEMBER 1990 ARTICLES 1221 



similarly. The control processor broadcasts the instructions of the 
test C and then the command for all processors containing FALSE 
to turn themselves off. It then broadcasts the instructions of A, and 
only the processors still on execute it. This is repeated until all 
processors have shut themselves off. Then the control processor 
instructs them all to turn themselves on again. 

Because the programming syntax for the CM2 is basically un- 
changed from that of sequential machines, many algorithms can 
easily be converted for the CM2. Unfortunately, many sequential 
algorithms converted in such a straightforward, mechanical way are 
not efficient for a parallel machine. This point is illustrated for 
matrix multiplication (Fig. 2) (21). For this reason, much of the 
research to date in algorithms for parallel machines has been a 
complete rethinking that has produced some unexpectedly new 
designs that do not resemble their counterparts for sequential 
computers (16, 17, 21, 22). 

Data Flow Computers 
Data flow computers are the most practical form of MIMD fine- 

grained parallel computers known. They limit the cost of synchroni- 
zation and afford a high degree of parallelism by replacing control 
flow with data flow. Under control flow, each processor has an 
instruction pointer that designates which instructions are enabled 
for execution. Under data flow, instructions become enabled for 
execution by the arrival of required operands. 

A data flow program consists of a set of instruction packets stored 
in the memory of the data flow computer. An instruction packet is 
disabled until all its required operands have arrived. Enabled 
instruction packets are sent via a distribution network to an array of 
processors where they are executed and their results distributed back 
to instruction packets that await them. If a large number of 
instruction packets are enabled, a data flow computer with a large 
number of processors achieves high parallelism and high utilization. 
A data flow computer can offer fine-grain parallelism because it can 
exploit parallelism at the level of individual hc t ions ,  expressions, 
and subexpressions (23). 

Program statements that operate on arrays of data will achieve 
high speed-ups on a data flow machine. Consider again the earlier 
example of a computation over a grid of points v(i ,  j ) .  In a data flow 
computer, all the assignment instructions for all the grid points 
would be enabled in parallel; each would await four operands 
generated by its four neighbors and would then produce a new 
result. The speed of the machine would be directly proportional to 
N / M  for N grid points and IM processors. These findings were 
confirmed by a study we performed jointly with NASA and the 
Defense Advanced Research Projects Agency (DARPA) in 1984 
(24). Benchmark studies on a prototype data flow computer at the 
University of Manchester have indicated that many sequential 
programs can also keep all the processors of a data flow computer 
busy (25). 

A data flow computer automatically solves the problem of 
assigning virtual processors (here, instruction packets) to the real 
processors of the machine: as soon as a virtual processor is enabled 
by the arrival of needed operands, it is sent to a real processor for 
execution. Although the ratio of computation to communication 
time per virtual processor may be low (0.01 to 0.1), utilization of 
the machine can nevertheless be close to 1 if the program has 
enough instructions enabled at the same time. 

Aside from a few university and commercial prototypes, no 
serious commercial data flow machine is available. There are several 
reasons for this. The SIMD machine is simpler to build and can be 
programmed within familiar language concepts; the data flow 

machine requires new languages and new compiling technologies 
based on unfamiliar concepts (19). The SIMD machine uses a 
hypercube interconnection network, which is cheap to build; the 
data flow machine depends on a high-speed packet-switched net- 
work, a technology that is only now becoming inexpensive. 

Some researchers are studying data flow languages as source 
languages for SIMD architectures. Experience with these languages 
will benefit the programming of all parallel machines. 

Conclusions 
The sequential computer has been the dominant paradigm since 

the first ENIAC was brought on-line in 1946. We are fast approach- 
ing the physical limits of this technology while our computational 
needs continue to grow. After two decades of experimentation, 
successful computers containing thousands of processors operating 
in parallel have been built and are for sale in the market, and early 
experience with these machines in practice has been highly encour- 
aging. Many challenges lie ahead in computer architecture, algo- 
rithms, programming languages, compilers, operating systems, per- 
formance evaluation, software engineering, and the vast number of 
applications of parallel computation. 

The new breed of massively parallel machines will, in the long 
run, have an impact as profound as microcomputers. These ma- 
chines are forcing us to rethink our approaches to algorithms: any 
technology that brings about a change in the manner of organizing 
work will have far-reaching effects. 
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