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Fig. 4. RNasc protection analysis of e-globin
RNA from peripheral blood and liver in staged
transgenic embryos. The probes used are listed at
the left and the size of protected products in
nucleotides are indicated at the right. The RNA
(100 ng) was prepared as described (18) and used
for each protection analysis. Probes were from
pSP64Ma (19), pSP64Mz (19), pSP65Bh1 (20),
pSP65Me” (19), and pSP64He, (19).

two mechanisms that control hemoglobin
switching in humans: an autonomous mode,
as exemplified by the e gene, and a compet-
itive mode, as illustrated by the vy to B
switch. Autonomous and competitive mech-
anisms have been proposed for hemoglobin
switching in the chicken (15). The trans-
fected adult B-globin gene is only expressed
in definitive cells of the chicken (15, 16) and
thus appears to be autonomous in its devel-
opmental regulation. In contrast, the devel-
opmental regulation of the chicken embry-
onic € genes appears to be competitive,
because the restriction of its expression to
primitive cells depends on the presence of
the B-globin gene on the same plasmid
(15, 16). Whereas the mechanisms of
switching appear to be similar in these two
species, the choice of the mechanisms with
respect to specific genes is reversed. This is
perhaps less surprising than it may seem,
because at the divergence of aves and
mammalia, only a single B-like globin gene
existed (17). The duplications that gave
rise to the human and chicken B-globin
families occurred later and, therefore, in-
dependently in the two species.
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Sequence-Specific DNA Binding by the c-Myc Protein

T. KErrH BLACKWELL, LEO KRETZNER, ELIZABETH M. BLACKWOOD,
ROBERT N. EISENMAN, HAROLD WEINTRAUB

While it has been known for some time that the c-Myc protein binds to random DNA
sequences, no sequence-specific binding activity has been detected. At its carboxyl
terminus, c-Myc contains a basic—helix-loop-helix ((HLH) motif, which is important
for dimerization and specific DNA binding, as demonstrated for other bHLH protein
family members. Of those studied, most bHLH proteins bind to sites that contain a
CA~- —TG consensus. In this study, the technique of selected and amplified binding-
sequence (SAAB) imprinting was used to identify a DNA sequence that was recognized
by c-Myc. A purified carboxyl-terminal fragment of human c-Myc that contained the
bHLH domain bound in vitro in a sequence-specific manner to the sequence,
CACGTG. These results suggest that some of the biological functions of Myc family
proteins are accomplished by sequence-specific DNA binding that is mediated by the

carboxyl-terminal region of the protein.

ESPITE A GREAT DEAL OF RE-
D search indicating that the c-myc on-

cogene functions in cell prolifera-
tion and differentiation, the molecular
mechanisms of myc function remain un-
known. Recent evidence suggests that c-myc
may be involved in transcription, DNA rep-
lication or both (1), and thus might be
expected to have a sequence-specific DNA-
binding actvity. However, although c-Myc
has been shown to bind to random DNA
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sequences, no sequence-specific DNA-bind-
ing activity has been demonstrated (2, 3).
c-Myc and other Myc family proteins con-
tain a basic—helix-loop-helix (bHLH) do-
main, a conserved region that mediates
DNA binding by other bHLH proteins (4,
5). The bHLH domain consists of the pro-
posed HLH motf (4), which mediates
homo- and heterooligomerization among
certain bHLH family members (6-8). Im-
mediately NH,-terminal to the HLH region
is a basic region that contacts DNA (7, 8).
The c-Myc bHLH region and an immedi-
ately COOH-terminal leucine zipper motif
(1) are essential for the cotransformation
properties of myc (9). The binding sites that
have been identified for other bHLH pro-
teins contain a CA—-TG consensus (4, 5,
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10, 11). However, bHLH protein com-
plexes differ in their affinities for sequences
that contain this motif (11), and certain
CA~ TG sites that are bound efficiently in
vitro by other bHLH proteins are not
bound by Myc family members (4, 6, 12).

The SAAB imprinting technique (11) and
other similar strategies (13) have made it
possible to efficiently identify specific nucleic
acid sequences that are bound by a protein
complex. In this approach, oligonucleotide
templates that contain a region of random
DNA sequence are selected for binding to a
protein complex of interest, and bound
DNA is subsequently amplified by the poly-
merase chain reaction (PCR). Successive
rounds of selection and amplification are
used to enrich for templates that bind with
the highest affinity. Bound templates can
then be analyzed directly and rapidly by
sequencing as a pool, providing an “im-
print” of protein-DNA binding. SAAB im-
printing has been used to explore the DNA-
binding sequence preferences of homo- and
heterooligomeric bHLH protein complexes
(11). In this report, we describe its use to
identify a CA—-TG site that is bound by
c-Myc protein in vitro.

Preparations of purified, full-length c-Myc
protein are often insoluble (3). Thus, we used
a purified preparation of a soluble, bacterially
produced glutathione S-transferase (GST)-c-
myc fusion protein (c-MycC92) that con-
tained the COOH-terminal 92 amino acids of
human c-Myc (Fig. 1A) to test for specific
DNA binding. The myc sequences of the
fusion protein included the bHLH domain
and leucine zipper, and therefore should con-
tain the minimal structural requirements for
DNA binding. By analogy, a truncated ver-
sion of the myogenic determination protein,
MyoD, that contains only the bBHLH region
binds specifically to appropriate DNA se-
quences (5). Our experimental DNA template
(D6, Fig. 1B) was designed on the basis of a
site in the muscle creatine kinase (MCK)
enhancer (14) to which MyoD binds in vitro
(5, 7), but had random nucleotide sequences
at ten positions within and flanking the
CA--TG consensus.

Binding of c-MycC92 protein to D6 se-
quences was not readily detectable by the
clectrophoretic mobility shift assay (EMSA)
(Fig. 1C, lane 1). However, the template
derived from two successive rounds of
SAARB isolation (c-MycD6?) (15) bound to
c-MycC92 in two distinct complexes (Fig.
1C, lane 2). The template isolated from the
faster migrating complex (c-MycD6%) (15)
also bound to ¢-MycC92, in an apparently
analogous set of complexes (Fig. 1C, lane
3). Formation of these complexes with the
initial D6 population can be detected, but

only after long exposures (16).
1150
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Fig. 1. EMSA of DNA binding by the ¢-MycC92 fusion
protein. (A) Diagram of c-MycC92 (21). The GST sequences, a
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leucine zipper (LEU) in the c-Myc sequences are indicared
approximately to scale. The NH,-terminal amino acid of each
c-Myc domain is numbered according to its position in full-
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length human c-Myc. (B) Core sequences of the MCK, D6, and
CMI templates. The 22-base pair core sequence of D6 was derived on the basis of the 3' (right) MyoD

binding site of the MCK enhancer (read 5’ to 3’ toward the MCK promoter) (14

), but was synthesized

with random sequence at the positions indicated by N. The D6 sequences shown are flanked on the 5
end by primer B and on the 3’ end by the complement of primer A (indicated as A") (23). The consensus
CA--TG motif is indicated by dots. (C) EMSA of ¢-MycC92 protein binding to the indicated

templates (24).

We determined the nucleotide sequences
of the D6 and c-MycD6* template pools
(Fig. 2). After PCR amplification of D6, the
positions indicated in Fig. 1B were of ap-
parently random sequence (Fig. 2). In con-
trast, c-MycD63 was characterized by a dis-
tinct symmetrical preference for C and G at
positions —1 and 1, respectively (Fig. 2),
and by less distinct preferences at more distal
positions. Because successive rounds of
SAAB isolation enrich for templates that
bind with higher affinities (11), we are un-
dertaking further rounds of selection to bet-
tér define these distal sequence preferences.
The template bound in the upper complex
(Fig. 1C, lane 2) had a sequence pattern that
was identical to that of c-MycD63, indicat-
ing that both the upper and lower
¢-MycC92-DNA complexes involved bind-
ing to the same sequence. c-MycC92 did not
bind to either of two CA— —TG templates of
different sequences (Fig. 1C, lanes 4 and 5),
which are bound specifically by other factors
(17), thus confirming that the selection for
specific binding sites is inherent in the
SAAB-imprinting assay.

An oligonucleotide template (CM1, Fig.
1B) that was synthesized on the basis of the

" ¢-MycD63 sequence bound to c-MycC92,
y seq y

but not to GST alone (Fig. 3, lanes 1 and 2),
indicating that we identified DNA se-
quences that were specifically bound by the
c-Myc portion of the fusion protein,
c-MycC92. Concurrent incubation of CM1
with c-MycC92 and an antibody to the 12
COOH-terminal amino acids of c-Myc (an-
ti-c-Myc 12C) (18) changed the mobility of
the complexes (Fig. 3, lane 3). Addition of
the peptide to which the antibody was gen-
erated blocked the interaction of the anti-
body with the protein-DNA complexes, and

no complex was observed between CM1 and
the antibody alone (Fig. 3, lanes 4 to 6).
These findings confirm that the observed
complexes contain c-MycC92 protein.

Our results have demonstrated that the
bHLH-leucine zipper domain of c-Myc
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buﬁf sites. Nucleotide sequen was per-
with labeled primer B by .dideoxy

method as in (11). The D6 shown is of

DNA that had undergone 35 cycles of PCR

amphﬁcanonﬁomlpgofncmphnc(ﬂ) Exper-
imentally derived sequence preferences at posi-
tions —1 and +1 are indicated to the right.
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binds to a specific sequence that contains the

CA--TG consensus. The finding that

c-MycC92 binds to only a subset of
CA--TG sites is consistent with the idea

that different groups of related bHLH pro-

teins might recognize different sets of
CA- -TG sites (11). Because we have not

altered any of the nucleotides in the CA— -TG
motif, we cannot say how important any of
these four residues is for Myc binding. The
c-Myc binding site, CACGTG, identified by
our assay is identical to a site in the adenovirus
major late promoter that is bound by a cellular
bHLH protein, upstream sequence factor
(USF) (19). USF is similar to Myc family
proteins in its basic region and contains an
apparent leucine zipper immediately COOH-
terminal to the HLH modf (19).

Results from SAAB imprint analyses have
suggested that bHLH proteins bind to
CA— —TG sites in homo- and heterodimeric
complexes in which each basic region binds
to a half-site that contains one-half of the
consensus (11). By analogy, we predict that
c-Myc would also bind in dimeric complex-
es; this idea is supported by the symmetry of
the CACGTG core sequence of its preferred
site. The c-MycC92-DNA complexes (Figs.
1 and 3) might thus represent mono- and
multimeric forms of such homodimers. In-
deed, c-Myc dimers and tetramers have been
observed with relatively high concentrations
of bacterially produced proteins (20). For-
mation of dimers and oligomers in vitro is
characteristic of other bHLH proteins (4-8,
11), but, in the case of c-Myc, may be of
special significance because of the potential
participation of the leucine zipper in oligo-
merization.

Our findings demonstrate that c-Myc can
act as a sequence-specific DNA-binding pro-
tein. Other bHLH proteins appear to func-
tion in vivo in heterooligometric complexes
(6, 7, 12). c-Myc might also bind in vivo to
DNA in concert with various oligomeriza-
tion partners. If so, by analogy to MyoD
and its constitutively expressed bHLH part-
ner, E2A, the preferred DNA binding site
for such a complex should consist of two
half-sites. One half-site should correspond
to one half of the sequence described herein,
which is recognized by c¢-Myc, while the
other half-site would consist of the sequence
preferred by its partner (11). If such a part-

23 NOVEMBER 1990

Fig. 3. Binding of
c-MycC92 to the
CM1 template is spe-
cific to c-Myc protein
sequences. Binding of
the indicated protein
and peptide prepara-
tions to CM1 tem-
plate was anal by
EMSA (25). The bind-
ing reactions indicat-
ed as Ab contained
anti—c-Myc  12C (1

- c-MycC92 + Ab + Peptide
- ¢-MycC92 + Peptide

- c-MycC92 + Ab
- Ab

- GST
- ¢-MycC92

kot b

amino acids of human
c-Myc protein. In the
designated reactions,
peptide (10 pg) was
incubated in the reac-
tion mixture for 5 min
at room temperature
cither with or without
the anti—c-Myc 12C
prior to addition of
DNA and c-MycC92.
All  other reaction
components were mixed simultaneously in each
sample.

Free
Oligo

1239788
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ner for c-Myc is identified, the SAAB im-
printing technique should be able to test this
prediction.

Note added in proof. G. Prendergast and E.
Ziff (personal communication) have found
the core sequence of the c-Myc DNA bind-
ing site to be the same as the sequence of the
site reported herein.
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