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Wilms Tumor Locus on 11p13 Defined by Multiple
CpG Island-Associated Transcripts

LAURA BONETTA, STEPHEN E. KUEHN, ANNIE HUANG, DAVID J. LAw,
LinpA M. KALIKIN, MINORU KoO1, ANTHONY E. REEVE,
BERNARD H. BROWNSTEIN, HERMAN YEGER, BRYAN R. G. WiLLIAMS,

ANDREW P. FEINBERG*

Wilms tumor is an embryonal kidney tumor involving complex pathology and genetics.
The Wilms tumor locus on chromosome 11p13 is defined by the region of overlap of
constitutional and tumor-associated deletions. Chromosome walking and yeast artifi-
cial chromosome (YAC) cloning were used to clone and map 850 kilobases of DNA.
Nine CpG islands, constituting a “CpG island archipelago,” were identified, including
three islands that were not apparent by conventional pulsed-field mapping, and thus
were at least partially methylated. Three distinct transcriptional units were found
closely associated with a CpG island within the boundaries of a homozygous DNA

deletion in a Wilms tumor.

HE DISTAL HALF OF CHROMOSOMAL
band 11p13 has attracted consider-
able interest as a target for positional

cloning because patients with 11p13 dele-

tions develop four abnormalities comprising
the WAGR syndrome: Wilms tumor (WT),
an embryonal malignancy of the kidney;
aniridia, or hypoplasia of the iris; genitouri-
nary dysplasia, including kidney and genital

malformations; and mental retardation (1).

Sporadic, non-WAGR Wilms tumor affects

that a gene isolated from 11p13 is the WT
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gene, by virtue of its location, although its
1 in 10,000 children and represents a puta-
tive tumor-suppressor model fulfilling
Knudson’s two-hit hypothesis, the para-
digm of which is retinoblastoma (2). How-
ever, as we and others have shown, the
ctiology of Wilms tumor is complex and
involves an additional locus at 11p15, and in
familial cases a locus on another chromo-
some (3). Two laboratories have proposed
expression was unaltered in Wilms tumors
(4, 5). In this and the accompanying report

(6), we describe the presence and location of
multiple transcribed sequences from this re-
gion, including two that show altered
expression in some Wilms tumors.

Our starting point in these efforts was S1
(D11837), a random DNA segment within
aregion homozygously deleted in WiT-13,a
sporadically occurring Wilms tumor (7). We
had previously set the upper size limit of the
WiT-13 deletion at 375 kb, on the basis of
mapping of random clones isolated from
chromosome- or band-specific libraries ().
To define the boundaries of the WiT-13
deletion and to identify regions for more
intensive screening for the genitourinary
and mental retardation genes, which have
been mapped close to WT (9), we used yeast
artificial chromosome (YAC) cloning,
thereby generating a complete physical map
of the region, unhampered by DNA meth-
ylation of genomic human DNA.

To obtain YACs with human genomic
DNA inserts from this region, we synthe-
sized oligonucleotides on the basis of the
DNA sequence of S1, and used these as
primers to screen a human YAC library (10)
by polymerase chain reaction (PCR) and
filter hybridization (11). Southern (DNA)
blot hybridization confirmed that two
clones, designated yF12 and yG6, included
S1 in their sequence, while only yG6 in-
cluded probe AvHI, which had been iso-
lated by genomic walking and was located
65 kb telomeric from S1. This indicated that
the two YACs have only a small region of
overlap and thus span a relatively large re-
gion of DNA. The YAC clones were
mapped by pulsed-field gel electrophoresis
(PFGE), by means of partial digestion con-
ditions with a set of eight rare-cutting re-
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striction enzymes, and hybridization with
end and internal clones (12). Phage libraries
were then prepared from each YAC (13). To
confirm synteny of the clones to chromo-
some 11, we used a hybrid cell line contain-
ing the WiT-13 microdeletion (7). We also
generated a microcell hybrid cell line con-
taining chromosome 11 (14). This analysis
revealed a region of nonsynteny in the
most distal 250 kb of yG6, presumably
due to a co-cloning event during library
construction. Subsequently, oligonucleo-
tides were derived from AvH]1 and used as
PCR primers for identification of additional
YAC clones. Four additional YACs—yC5,
yAl2, yC6, and yD7—were obtained. All
but yAl2 showed identical pulse-field
maps as well as synteny to chromosome 11,
allowing us to extend the map of this
region to850 kb. Using this map and the
phageclones derived from the YACs, we
defined and mapped the homozygous dele-
tion of WiT-13 to 175 kb, considerably
smaller than the previous estimate (8) (Fig.
1).

Our map included rare-cutting restriction
endonuclease sites previously identified by
direct pulsed-field mapping of human DNA
(4, 5, 7-9). However, there were a large
number of sites apparent only in the YACs.
These represent methylated (and transpar-
ent) sites in human genomic DNA; as rare-
cutting enzymes are inhibited by genomic
DNA methylation, whereas the YACs are
unmethylated when propagated in yeast.
Bird et al. (15) have described 1- to 10-kb
CpG-rich “islands,” in which CpG dinucle-
otides are abundant and unmethylated, in
the vicinity of housekeeping genes. Coinci-
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Fig. 2. Detection of conserved DNA probes that contain sequences that are expressed in human kidney.
(A) Genomic DNA (10 ug per lane) from (lane 1) human; (lane 2) mouse; (lane 3) hamster; (lane 4)
rat; (lane 5) cow; (lane 6) dog; and (lane 7) chicken was digested with Hind III. After electrophoresis
and blotting onto GeneScreen Plus membranes (New England Nuclear), the filters were hybridized at
42°C in 30% formamide, 5x saline sodium citrate (SSC), 1x Denhardt’s solution, with DNA probes
radioactively labeled as in Fig. 1. The most stringent wash was at 60°C in 0.2x SSC and 0.1% SDS for
30 min. The probes used for hybridization are indicated. (B) Total RNA (10 pg), for probes Av2 and
E9, or poly(A) " RNA (2 pg), for probe AvH], prepared from adult human kidney (20), were separated
on a 1% agarose-formaldehyde gel. After blotting onto GeneScreen Plus membranes, hybridizations
were performed at 65°C in 1% bovine serum albumin (BSA), 0.5 M sodium phosphate, 1 mM EDTA,
and 7% SDS. The filters were washed as in Fig. 1. The arrows indicate the position of the transcripts.
The positions of the 285 and 18S ribosomal RNA bands are also shown.
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Fig. 3. Tissue distribution and developmental

expression of Av2 transcript. Poly: RNA
(1 pg) isolated from (A) human fetal and adult

kidncy, and (B) human fetal heart, lung, kidncy,

and liver, was separated by
agarose- formaldehydc gel,
Screen membranes, and hybridized with probe Av2
(Fig. 1). RNA isolation and Northern hybridiza-

tion were performed as in Fig. 2B. The position of

hybridizing bands in relation to RNA markers is

indicated. Rehybridization to glyceraldehyde phos-

phate dehydrogenase (GAPDH) (21) was used to
loading.

monitor RNA

dent rare-cutting sites identified by PFGE
are assumed to represent CpG islands (4, 5,
8, 9), an idea confirmed by DNA sequencing
in the case of island 6 (Fig. 1). The YAC-
derived map revealed multiple clusters of
rare-cutting sites, at roughly 100-kb inter-
vals (Fig. 1). We therefore propose that
these multiple CpG islands constitute a
“CpG island archipelago.” It follows that
some of the islands within this archipelago
are at least partially methylated, which may
explain why they have been previously inap-
parent by PFGE analysis. In some cases,
methylation affected some but not all sites in
a CpG island. For example, we observed a
Not I site at position 670 kb that had not
been previously recognized (Fig. 1). Fur-
thermore, island 7, which is within all the
reported homozygous deletions in tumors
(4, 5) (Fig. 1) is partially methylated. Since
methylated islands are associated with X
inactivation (16), autosomal methylated is-
lands may have a novel role in gene regula-
tion or genomic imprinting.

Our walking efforts were directed primar-
ily toward cloning the DNA sequences
flanking CpG island 6, since CpG islands are
associated with transcribed genes (15), and
island 6 is localized within the center of the
WiT-13 homozygous deletion. The bidirec-
tional walk resulted in the cloning of a
region of 130 kb (Fig. 1) (17). Four recom-
binant clones that included S1 were unstable
at their telomeric ends on propagation in
bacteria. However, the YAC yF12 appeared
stable in this region, and clone ANF32, which
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defines the WiT-13 macrodeletion break-
point, delimited this region to 9 kb. The
chromosomal rearrangement representing
one of the WiT-13 deletion breakpoints is
localized precisely within this 9-kb segment.
The chromosomal walk included all but 45 kb
of the DNA within the WiT-13

deletion as mapped by the YACs (Fig. 1).

Based on the prediction that DNA frag-
ments containing coding exons would be
conserved among different species, single-
copy probes were used to screen for phylo-
genetically conserved sequences (Fig. 2A).
Three conserved sequences (Av2, AvHI,
and E9) were identified, all of which recog-
nized transcripts expressed in human fetal
kidney (Fig. 2B). Probe Av2 was located 9
kb centromeric from island 6, and detected a
transcript of 2 kb. Probe AvHI, which
mapped to and included island 6, identified
a2.5-kb transcript. Probe E9 mapped 35 kb
toward the telomere from island 6 and de-
tected a 3.5-kb transcript. Human kidney
cDNA libraries were screened with all three
probes. Complementary DNA clones for
two of them have been isolated: GB16, a
2-kb cDNA clone recognized by AvH1 and
corresponding to the gene WIT-1; and
31El, a 2.7-kb cDNA clone recognized by
E9 and corresponding to the gene WIT-2
(6) Isolation of these cDNAs and character-
ization of their tissue-, developmental-, and
tumor-specific expression are described in
the accompanying report (6). While all three
sequences lie within the homozygously de-
leted region of WiT-13, Av2 lies outside the
deleted region of another tumor, PER (5),
and thus is probably not a candidate WT
gene. Although the transcript identified by
Av2 does not exhibit the same tissue speci-
ficity as WIT-1 and WIT-2, it is relatively
abundant in fetal kidney (Fig. 3), and thus
may also be involved in kidney develop-
ment.

Given that WIT-1 and WIT-2 mapped to
island 6 (Fig. 1) (6), we screened other CpG
islands for transcribed sequences. We took
advantage of the observation that most Nru
I sites in the region occurred in CpG islands.
We screened 50 phage clones for internal
Nru I sites and used those clones as probes
for Northern (RNA) blot analysis. In this
way, two phage clones, AF2 and AF7, were
found to detect transcripts of sizes 2.0 and
3.7 kb, respectively, in human fetal kidney
(18). Although AF2 and AF7 are not deleted
in WiT-13 tumor DNA, the regions to
which these transcribed sequences map may
be relevant to genitourinary dysplasia (9).
No transcripts have yet been identified with
clones from the region of island 7, which
does map within the WiT-13 deletion.

These data have three important implica-
tions. First, we have identified a large num-

ber of genes expressed in fetal kidney and
located within the WAGR region. Muta-
tions in any one of these genes may be
involved in WT or genitourinary dysplasia.
Second, we have cloned an 850-kb region in
YAC and phage vectors. It will be relatively
straightforward to clone other genes in the
WAGR complex by isolating adjacent YAC
clones. Furthermore, since chromosome 11
confers a tumor suppressor phenotype in
WT (19), the YACs can be used directly in
genetic complementation experiments, an
important advantage given the identification
of multiple candidate genes. Third, we have
identified three CpG islands in this region
that are at least partially methylated in DNA
from cultured lymphoblasts and fibroblasts,
the cells used in conventional genomic
pulsed-field mapping. The cloning of these
islands will now permit direct examination
of their methylation pattern in diverse tissue
types. We hypothesize that several genes
important in normal kidney development,
which may be involved in WT or genitouri-
nary dysplasia, liec within a CpG island ar-
chipelago. Our observation of methylation
of some of these islands suggests a potential
molecular basis for either normal develop-
mental regulation or genomic imprinting of
these genes.

Note added in proof: We have recently ob-
served that the left end of YAC yF12, out-
side the region of the WiT-13 deletion and
transcripts reported here, although syntenic
to some chromosome 11 hybrids, is nonsyn-
tenic to others and thus may not be contig-
uous to the remainder of the YAC.
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Regulation of Gene Expression with Double-Stranded
Phosphorothioate Oligonucleotides

ANNA BIELINSKA,* RAMESH A. SHIVDASANL* LIQUAN ZHANG,

GARY J. NABELT

Alteration of gene transcription by inhibition of specific transcriptional regulatory
proteins is necessary for determining how these factors participate in cellular differ-
entiation. The functions of these proteins can be antagonized by several methods, each
with specific limitations. Inhibition of sequence-specific DNA-binding proteins was
achieved with double-stranded (ds) phosphorothioate oligonucleotides that contained
octamer or kB consensus sequences. The phosphorothioate oligonucleotides specifi-
cally bound either octamer transcription factor or nuclear factor (NF)-kB. The
modified oligonucleotides accumulated in cells more effectively than standard ds
oligonucleotides and modulated gene expression in a specific manner. Octamer-
dependent activation of a reporter plasmid or NF-kB—dependent activation of the
human immunodeficiency virus (HIV) enhancer was inhibited when the appropriate
phosphorothioate oligonucleotide was added to a transiently transfected B cell line.
Addition of phosphorothioate oligonucleotides that contained the octamer consensus
to Jurkat T leukemia cells inhibited interleukin-2 (IL-2) secretion to a degree similar
to that observed with a mutated octamer site in the IL-2 enhancer. The ds phospho-
rothioate oligonucleotides probably compete for binding of specific transcription
factors and may provide anti-viral, immunosuppressive, or other therapeutic effects.

NALYSIS OF THE FUNCTION OF EU-
karyotic transcriptional regulatory
proteins in mammalian cells has
been limited. Because such transcription fac-
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tors are often essential to cell viability, mu-
tant cell lines lacking these proteins can be
difficult to obtain. An alternative approach is
to generate trans-dominant mutants that
interfere with the function of transactiva-
tors. While this strategy has been successtul
(1), the generation of such mutants is not
always possible. Another method utilizes
promoter competition, whereby plasmids
containing cis-acting elements in common

with an indicator gene are introduced in
high copy number into cells (2). Because
these plasmids must be maintained uni-
formly in large numbers of cells, this ap-
proach has also been limiting. Advances in
the synthesis of DNA now allows an alter-
native approach to this problem. Oligonu-
cleotides with modified phosphodiester
bonds, such as phosphorothioate, methyl
phosphate, phosphoramidite, or methyl
phosphonate derivatives can be routinely
synthesized in large amounts and are rela-
tively resistant to nucleases (3, 4). Because of
their increased cell permeability and stabil-
ity, these compounds have been used as
antisense agents (5). We sought to ascertain
whether double-stranded (ds) phospho-
rothioates could penetrate cells, bind
sequence-specific  DNA-binding proteins,
and interfere with eukaryotic transcription
in vivo.

To determine whether ds phosphorothio-
ates could compete for binding of sequence-
specific DNA-binding proteins, we used
32P-labeled ds oligonucleotides that con-
tained the octamer or kB elements in the
electrophoretic  mobility  shift  assay
(EMSA). An octamer site derived from the
IL-2 enhancer and nuclear extracts from
Jurkat cells were used for these studies (6-8).
Protein binding to the 32P-labeled IL-2
octamer probe (unmodified) was inhibited
equally well by unlabeled ds oligonucleotide
or phosphorothioate octamer sequences,
but not by kB sequences of either type (Fig.
1A). Conversely, protein binding to 32P-
labeled kB probe (unmodified) was inhib-
ited in an’indistinguishable manner by ds
oligonucleotide or phophorothioate kB se-
quences, but not by octamer sequences of
cither type (Fig. 1B). When phosphoro-
thioates were used as labeled probes, we
observed specific binding using octamer
(Fig. 1C) or kB (Fig. 1D) in the EMSA. In
addition, protein-binding to the phospho-
rothioates was inhibited equally well by the
appropriate unmodified or phosphorothio-
ate oligonucleotides (Fig. 1), but not by
oligonucleotides with mutations within the
appropriate consensus binding site (9). Be-
cause phosphorothioates competed with
equimolar potency, they may serve as poten-
tial antagonists, despite the fact that they
differ chemically from standard DNA and
may not interact with DNA binding proteins
in an identical manner. The phosphorothio-
ates also showed increased resistance to diges-
tion by deoxyribonuclease (DNase) I (9), as
described for other endonucleases (10).

To compare the efhcacy of cellular incor-
poration of ds phosphorothioate and phos-
phodiester oligonucleotides, we incubated
32P-labeled samples of each type (octamer
sequences) with Jurkat T leukemia cells.
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