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Mesodermal Control of Neural Cell Identity:
Floor Plate Induction by the Notochord

MARYSIA PLACZEK, MARC TESSIER-LAVIGNE, TOSHIYA YAMADA,

THOMAS JESSELL, JANE DODD*

The floor plate is a specialized group of midline neuroepithelial cells that appears to
regulate cell differentiation and axonal growth in the developing vertebrate nervous
system. A floor plate—specific chemoattractant was used as a marker to examine the role
of the notochord in avian floor plate development. Expression of this chemoattractant
in lateral cells of the neural plate and neural tube was induced by an ectopic notochord,
and midline neural tube cells did not express the chemoattractant after removal of the
notochord early in development. These results provide evidence that a local signal from
the notochord induces the functional properties of the floor plate.

HE DEVELOPMENT OF THE VERTE-

brate nervous system begins with the

induction of the neural plate from
undifferentiated cctoderm in response to
signals that derive from adjacent mesoderm
(1, 2). Within the neural plate, the first cells
to differentiate are located at its midline (3)
and give rise to the floor plate, a distinct
structure at the ventral midline of the neural
tube (4, 5). The floor plate appears to be the
source of a signal that regulates the pattern
of cell differentiation along the dorsoventral
axis of the ncural tube (6, 7). The floor plate
also contributes to axonal patterning by
releasing a diftusible factor that may attract

commissural axons to the ventral midline of

the spinal cord (8) and by guiding these
axons after thev cross the midline (9). The
specialized tunctions of the floor plate have
led us to examine the interactions that con-
trol its differentiation.

Prospective floor plate cells are located
immediately above the notochord, and no-
tochord gratts placed next to the neural tube
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cause wedging of the adjacent neural epithe-
lium similar to that observed during the
carly development of the floor plate (10).
These results have led to the suggestion that
floor plate differentiation 1s induced by the
notochord (10, 11). However, u)mpamblL
changes in neuroepithehial cell shape occur
in manv regions of the developing nervous
svstem (12); thus it is not possible unambig-
uously to identity the floor plate by its
morphology. The floor plate-specific che-
moattractant (8) provides a marker with
which to detect the floor plate and its devel-
opment in response to the notochord. Here,
we report that this chemoattractant 1s in-
duced in fateral cells of the chick neural plate
and neural tube in vivo and i vitro and that
the chemoattractant does not appear in cells
at the ventral midline of the neural tube in
the absence of the notochord. A local signal
from the notochord therefore appears to act
on overlving necural plate cells to induce
floor plate ditferentiation.

To study the induction of the floor plate
in the chick embrvo, we mitially examined
whether chick floor plate causes outgrowth
and orientation of commissural axons from
explants of E11 rat dorsal spinal cord (13,
14). Production of the chemoattractant was
quantified by counting the number of axon
bundles that emerged trom the rat dorsal
explants. Floor plate explants from stage 6
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to 24 chicks (15) were as active as rat floor
plate (8) and always evoked outgrowth and
orientation of commissural axons. Dorsal
spinal cord explants cultured with lateral
regions of stage 6 to 24 chick neural epithe-
lium showed only the low amount of out-
growth normally observed when they were
cultured alone (see below).

To test the inductive properties of the
notochord in vivo, we grafted a 500- to
600-pm-long piece of stage 10 chick noto-
chord to a site immediately adjacent to one
side of the neural tube of stage 10 host
embryos (16) (Fig. 1, A and B) and allowed
the embryos to develop to stages 19 to 23.
Those in which the supernumerary noto-
chord was located next to the spinal cord
and approximately midway between the

Fig. 1. The notochord can induce chemotropic
activity in lateral neural epithelium in vivo. (A)
Regions of chick spinal cord assayed for chemo-
tropic activity, subsequent to grafting a supernu-
merary notochord. (B) Phase-contrast micro-
graph of a transverse section of chick spinal cord
40 hours after grafting of a supernumerary noto-
chord. The section has been labeled with mono-
clonal antibody (MAb) Not-1, which recognizes
an epitope expressed selectively by chick noto-
chord. Both host and donor notochords are la-
beled. The location of the induced floor plate is
indicated (arrowhead). Bar represents 100 um.
(C and D) Quantitative analysis of outgrowth
from dorsal spinal cord explants. (C) Percentage
of dorsal explants showing axon outgrowth, when
cultured alone (Con.), or when cocultured with
the three different regions of the spinal cord or
with the grafted notochord. (D) Average number
of axon bundles from those dorsal explants that
showed outgrowth. Standard error bars are
shown. The number of explants for each value in
(C) is as follows: Con. 9; £, 36; c, 36; i, 36; n’, 23.

roof plate and floor plate were analyzed
further. A 700- to 900-um region of the
neural tube adjacent to the grafted noto-
chord, the equivalent region of the spinal
cord from the contralateral side, the floor
plate of the host embryo, and the grafted
notochord were isolated and tested sepa-
rately for their ability to promote commis-
sural axon outgrowth (Figs. 1 and 2). Ex-
plants of spinal cord from the region
adjacent to the grafted notochord evoked
axon outgrowth in most (83%) experiments
and were almost as active as the host floor
plate (Fig. 1, C and D, and Fig. 2, B and D).
Neither the neural epithelium from the con-
tralateral unoperated side of the spinal cord
nor the grafted notochord had any chemo-
tropic activity (Fig. 1, C and D, and Fig.
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Abbreviations: f, host floor plate; ¢, spinal cord contralateral to grafted notochord; i, spinal cord
ipsilateral to grafted notochord; n, host notochord; n’, grafted notochord.

Fig. 2. Phase-contrast mi-
crographs showing exam-
ples of outgrowth from dor-
sal explants cultured for 40
to 44 hours in collagen ma-
trix. (A) No axons emerge
from a rat dorsal spinal cord
explant cultured alone. (B)
Extensive outgrowth of
commissural axons is ob-
served from the ventral-
most edge of a dorsal ex-
plant cultured in the pres-
ence of stage 22 chick floor
plate. (C) No axon out-
growth occurs from a dorsal
explant presented with stage

22 neural epithelium isolated from a region of spinal cord contralateral to a grafted notochord. (D)
Profuse axon outgrowth is evoked by stage 22 neural epithelium isolated from a region of spinal cord
immediately adjacent to a grafted notochord. (E) The ventral midline of stage 6 neural plate evokes
outgrowth from a dorsal explant. (F) Stage 6 lateral neural plate does not evoke outgrowth. (G) Axon
outgrowth is evoked when stage 6 lateral neural plate is cultured in direct contact with stage 7
notochord. (H) No axon outgrowth is observed in a dorsal explant in response to a stage 7 notochord
alone. Bar represents 180 pm. Abbreviations: d, dorsal spinal cord explant; M, midline neural plate; L,
lateral neural plate; N, notochord; LN, notochord plus lateral neural plate; f, host floor plate; ¢, spinal
cord contralateral to grafted notochord; i, spinal cord ipsilateral to grafted notochord.
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Fig. 3. Induction of chemotropic activity in the
lateral neural plate in vitro. (A) Schematic cross
section through stages 6 to 7 chick embryo neural
plate and underlying notochord. Regions assayed
for chemotropic activity are boxed. (B) Dorsal
spinal cord explants (D) were cultured for 40 to
44 hours, cither alone (Con.), with midline neural
plate (a), with lateral neural plate alone (b), with
notochord alone (c), and with lateral neural plate
and notochord in contact (d) or apart (¢). (C and
D) The percentage of dorsal explants showing
axon outgrowth (C) and the average number of
axon bundles from those dorsal explants that
showed outgrowth (D), when cultured alone
(Con.) or in cach experimental paradigm (a to ).
Standard error bars are shown. The number of
explants for each column in (C) is as follows:
Con, 67; a, 40; b, 59; ¢, 44; d, 39; ¢, 31.
Abbreviations: D, dorsal spinal cord explant. M,
midline neural plate; L, lateral neural plate; N,
notochord.

2C). Similarly sized grafts of embryonic
chick gut or human hair also did not induce
chemotropic activity in adjacent neural epi-
thelium. Thus the notochord induced
expression of chemotropic activity in re-
gions of the chick neural tube that were
normally devoid of this activity.

Induction of the chemoattractant was
markedly reduced or abolished in older em-
bryos (Table 1). The neural epithelium may
therefore be competent to respond to induc-
tive signals that derive from the notochord
only up to about stage 11. However, we
cannot exclude the possibility that older
embryos express factors that destroy or in-
hibit the action of the notochord-derived
inductive signal. The period of competence
coincides with that over which wedging of
neuroepithelial cells can be observed after
notochord grafts (11).

It is possible that in vivo other tissues act
in combination with the notochord to in-
duce chemotropic activity. To test whether
the notochord alone is sufficient for induc-
tion, we examined the interactions between
isolated stage 7 chick notochord and lateral
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Table 1. Induction of chemotropic activity depends on the age of the host neural tube. Quantification
of axon outgrowth was performed as described (14) after grafting of stage 10 notochord adjacent to the
neural tube of different aged host embryos. Bundle numbers are mean + SEM where appropriate.
Explants were obtained from 11, 5, and 12 grafted embryos for stage 10, 11, and 12 to 14, respectively.
Ipsi, neural tissue ipsilateral to the grafted notochord; Contra, neural tissue contralateral to the grafted

notochord.
Stage 10 Stage 11 Stage 12-14
Results .
Ipsi Contra Ipsi Contra Ipsi Contra
Explants exhibiting axon 76 7 38 0 7 8
outgrowth (%)
No. of bundles/positive 20+ 2.1 2 225 0 27=*15 1
explant
No. of cultured explants 25 28 8 8 44 24

regions of stages 6 and 7 neural plate in vitro
(Fig. 3). Explants of the lateral region of the
neural plate alone did not exhibit chemotro-
pic activity (Figs. 2F and 3). When lateral
neural plate and notochord were placed in
direct contact and about 300 wm away from
a segment of El1l rat dorsal spinal cord,
significant axon outgrowth was observed in
72% of experiments (Figs. 2G and 3). No
significant axon outgrowth was observed
when the notochord (17) and lateral neural
plate were placed 50 to 100 pwm apart (Fig.
3), which rules out the possibility that the
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Fig. 4. The notochord is required for the expres-
sion of chemotropic activity in the developing
ncural tube. (A) Stages 19 to 23 chick spinal cord
showing the regions of the ventral midline assayed
for chemotropic activity (hatched) following the
removal of a segment of notochord 40 to 48
hours previously. (B) Percentage of dorsal ex-
plants showing axon outgrowth, when cultured
alone (Con.) or when cocultured with the regions
from (A) as indicated beneath cach column. (C)
Average number of axon bundles in those dorsal
cxplants that showed any axon outgrowth, when
cultured alone (Con.) or with cach region of the
ventral midline of the neural tube. Standard error
bars are shown. Number of explants for cach
value in (C) is as follows: Con, 27; a, 18; b, 17;
and ¢, 18.
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uninduced neural plate and notochord re-
lease different factors that act in combina-
tion. Notochord alone, therefore, can in-
duce chemotropic activity in the neural plate
(18). Proximity or direct contact between
cells of the notochord and neural plate may
be necessary for induction of the floor plate.
In support of this, during normal develop-
ment only those neural plate cells contacted
by the notochord exhibit the shape changes
(19) and surface antigens (6) characteristic
of early floor plate differentiation.

We next determined whether the noto-
chord is required for the normal develop-
ment of the floor plate by examining the
effect of notochord removal on the expres-
sion of chemotropic activity by cells at the
ventral midline of the neural tube. The
ventral midline of the caudal neural tube of
stages 10 to 12 embryos does not exhibit
chemotropic activity (20), suggesting that
floor plate development in the caudal neural
tube is significantly delayed relative to the
rostral neural tube (21). We therefore exam-
ined whether removal of the notochord
from the caudal region of stage 10 to 12
embryos (22) prevented the appearance of
the chemoattractant. The ventral midline of
the neural tube was isolated from the noto-
chordless region and from regions just ros-
tral and caudal and tested independently for
chemotropic activity. The ventral midline at
levels lacking a notochord did not evoke
axon outgrowth, whereas the rostral and
caudal regions of ventral midline evoked
extensive outgrowth (Fig. 4).

Our results show that the notochord is
required for the expression of chemotropic
activity by ventral midline cells and suggest
that in grafting experiments, the notochord
alone is responsible for the appearance of
this activity in lateral neuroepithelial cells.
Because there is little cell death within the
chick neural tube before stage 15 (23),
expression of chemotropic activity in neural
cells presumably results from induction
rather than from the rescue of a population
of precursor cells that dic in the absence of

the notochord. Notochord grafts also in-
duce floor plate surface antigens (6) and cell
shape changes (10, 19) in lateral neuroepi-
thelial cells. Thus many, perhaps all, of the
phenotypic properties of the floor plate are
induced by the notochord (24).

In vertebrate embryos, the floor plate and
notochord share an early lineage (25, 26)
and exhibit several molecular and functional
properties in common (5-7). On this basis
we previously raised the possibility that the
specialized lineage of the floor plate may
account for its functional properties (5).
However, our present results show that cells
of the lateral neural tube that do not have
any lineage relationship with the notochord
can acquire floor plate properties. More-
over, fate mapping studies in the chick hind-
brain have shown that cells that originate in
the lateral neural plate can populate the floor
plate (27). These two observations suggest
that the common cell ancestry that exists
between midline neural plate cells and the
notochord does not contribute to the
known functions of the floor plate.

More generally, these results suggest that
mesodermally derived inductive signals have
sequential and progressively more refined
roles in neural differentiation. During gas-
trulation, these signals are responsible for
the initial induction of the neural plate and
for its early regionalization along the antero-
posterior axis (1, 2). Our results show that
mesoderm also controls the identity of spe-
cific cells within the neural plate. Induction
of the floor plate by the notochord appears
to be a critical step in many subsequent
aspects of cell differentiation and axon guid-
ance in the developing nervous system.
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Correction of a Defect in Mammalian GPI Anchor
Biosynthesis by a Transfected Yeast Gene

R. DEGASPERI, L. J. THOMAS, E. Sucivama, H. M. CHANG,
P. J. BEck, P. OrRLEAN, C. ALBRIGHT, G. WANECK, J. F. SAMBROOK,

C. D. WarreN, E. T. H. YEu*

Glycosylphosphatidylinositol (GPI) serves as a membrane anchor for a large number
of eukaryotic proteins. A genetic approach was used to investigate the biosynthesis of
GPI anchor precursors in mammalian cells. T cell hybridoma mutants that cannot
synthesize dolichol-phosphate-mannose (Dol-P-Man) also do not express on their
surface GPI-anchored proteins such as Thy-1 and Ly-6A. These mutants cannot form
mannose-containing GPI precursors. Transfection with the yeast Dol-P-Man synthase
gene rescues the synthesis of both Dol-P-Man and mannose-containing GPI precur-
sors, as well as the surface expression of Thy-1 and Ly-6A, suggesting that Dol-P-Man
is the donor of at least one mannose residue in the GPI core.

NUMBER OF EUKARYOTIC PRO-
teins, such as Thy-1, Ly-6A, and the
variant surface glycoprotein (VSG)

of the protozoan Trypanosoma brucei, are

attached to the cell membrane by a GPI
anchor (1, 2). The GPI anchors of T. brucei

VSG and rat brain Thy-1 have a remarkably

conserved core structure (3, 4), which sug-

gests that a common biosynthetic pathway
may have been conserved throughout eu-
karyotic evolution. For VSG, the first step in

GPI anchor biosynthesis is the transfer of
N-acetylglucosamine (GIcNAc) from uri-
dine 5'-diphosphate (UDDP)-N-acetylglu-
cosamine to phosphatidylinositol, which is
followed by N-deacetylation to form glu-
cosaminylphosphatidylinositol (5, 6). Sub-
sequently, three mannose residues are added
from either guanosine 5'-diphosphate
(GDP)-mannose or Dol-P-Man, after
which phosphoethanolamine is added. The
completed GPI core is then transferred en
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