
Effects of Climatic Warming on Lakes of the 
Central Boreal Forest 

Twenty years of climatic, hydrologic, and ecological records for the Experimental 
Lakes Area of northwestern Ontario show that air and lake temperatures have 
increased by 2°C and the length of the ice-free season has increased by 3 weeks. Higher 
than normal evaporation and lower than average precipitation have decreased rates of 
water renewal in lakes. Concentrations of most chemicals have increased in both lakes 
and streams because of decreased water renewal and forest fires in the catchments. In 
Lake 239, populations and diversity of phytoplankton also increased, but primary 
production showed no consistent trend. Increased wind velocities, increased transpar- 
ency, and increased exposure to wind of lakes in burned catchments caused thermo- 
clines to deepen. As a result, summer habitats for cold stenothermic organisms like lake 
trout and opposum shrimp decreased. Our observations may provide a preview of the 
effects of increased greenhouse warming on boreal lakes. 

RECENT CLILUTE MODELS I'KEDICT 

increases in air temperatures and 
decreases in soil moisture through- 

out nluch of North America in the nest 
several decades as the result of increased 
greenhouse lvarming. In North America, 
some models predict that greatest effects in 
sununer nil1 occur at about 48" to  52"N and 
90" to 100°\V, where summer temperature 
increases of up to 9°C atld soil moisture 
decreases of greater that1 50% arc predicted 
(1). If these forecasts are correct, the boreal 
ecosystems of northwestern Ontario should 
be severely affected, because the area is 
already quite warm and arid (2) and has 
thin, sandy soils with small \vatu storage 
capacities. During periods \vith lower than 
normal precipitation, forest fires are com- 
mon, because the small moisturc rcsenes in 
soils are depleted rapidly \vhcn dry periods 
exceed a few \veeks in duration (3). 

Kegimling in 1969 to 1971, we have 
collected continuous records of weather, 
hydrolog)., the chemistn of lakes atld their 
inflo\v and outflow streams, and b i o l o p  of 
lakcs at the Experinlental Lakcs Area (ELA), 
north\vcstern Ontario, near the area of pre- 
dicted maximum suunmer greenhouse effect 
( 4 ) .  Consistent sampling and analytical 
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methods \Yere used throughout (5).The 
pcriod of record has been one of almost 
continuous \varming and increasing inci-
dence of intermittent drought. The increases -
in temperature that \ve have obscned in the 
past 20 years are comparable to the maxi- 
mum changes espected due to increased 
greenhouse \i arming for m a w  areas 
LVhcthcr or not the obsencd =arming is 
due to increasing greenhouse effect, our 
obscn ations on a \ arien. of ecological pro- 
cesses pro\ ~ d c  a prcvicn of ho\i cl~matic 
change mav affect boreal lakes and catch- 
ments in the next ccntu?. In this report, we 
present results for Lake 239, which has been 
used as a reference basin for many of the 
long-term experiments at ELA. The lake is 
typical of many small boreal lakes on the 
Precambrian Shield i68). 

Durlng our period of record, the mean 
~rlnual air temperature at the ELX slte has 
increased b! about 2"C, from loto 2°C in 
the late 1960s ,md early 1970s to  3" to 5°C 
bv the mid- 1980s [(9) Fig 1A1. This 1% arm-
ing has causcd corresponding increases in 
the mean and maximum \vater temperatures 
of lakes in the area. in the heat contint of the 
lakes during the ice-free season, and in the 
duration of the period that lakcs are ice-free 
[( lo)  Fig. 1, B and C]. 

The incidence of years with precipitation 
belolv the long-term average has increased 
since thc mid-1970s (Fig. l D ) .  The higher- 
than-normal air and water temperatures 
have also caused evapotranspiration to  tn- 

crease (9). As a result, the \volume of runoff 
from terrestrial basins has decreased during 
the period of record, and the rates of water 
rcne\val for lakes in the area decreased dra- 
maticallv [ ( I  1) Fig. 1E1. 

The obsemed decreases in \vatcr renewal 
would be expected to  concentrate chemical 
solutes in the lakcs (12). This has happened 
for both total dissolved N and more con- 
scmative ions (Fig. 1, F a t ~ d  G).  For P, a 
gradual increase from 1972 to 1985 \vas 
follo\ved by a dramatic decline, with values 
remaining lo\\ from 1986 to 1988. Overall, 
the trend for P \vas not statistically signifi- 
cant, but the combined opposite trends in N 
m d  P led to  a near doubling of the ratio of 
total N to total P from \values of about 25 : 1 
by ~veight to approximately 50 :  1.The con- 
centrations of relatively consemativc ions 
exceeded those predicted by models based 
solely on \vater rene\val, because of in-
creased input of these ions from streams 
draining burned forested \vatershcds and 
\vetlands \vith low water tables (14). Thus, a 
combination of decreased water flows and 
increased incidence of forest fires should 
cause increased chemical concentrations and 
P limitation in lakcs and streams of the 
boreal zone. 

The decreased \vatcr flo\vs and denuda- 
tion of large areas by fire have also affected 
the physical properties of lakcs. Lakcs have 
become clearer, because of lower imports of 
dissolved, colored organic matter and longer 
residence tinles (13, 16). The resulting in- 
crease in penetration of solar energ). (Fig. 
1 H )  plus the increased wind \relocity (Fig. 
11) resulting from the disappearance of for- 
est co \w causcd the thermoclines of lakes to 
deepen [ ( 1 7 )Fig. l J ] .  

The average duration of the ice-free sea- 
son increased by about 20  days for lakes in 
the area (Fig. 1C); this trend primarily 
reflects earlier ice-out dates in the spring. N o  
significant changes were obsened in the 
date of freczcup in the aurunin. The strong 
effect in spring is probably the result of two 
factors. First, increases in air tenlpcrature 
\verc most pronounced in the months of 
April a t ~ d  may (18). Second, below-average 
snolv covers and warm temperatures in 
March caused sno\v to jlsappear from lake 
surfaces earlier in the later years of the 
record (Fig. 1L);  as a result, the anmount of 
solar radiation absorbed by the lake in 
spring has increased ( 19). 

Increases in the standing crop of phyto- 
plankton accompanied increases in temper- 
ature and nutrient concentration (20) Fig. 
1 K ) .  The diversin of the phytoplankton 
communin also increased slightly, but there 
\vere no major changes in dominant species. 
Phytoplankton abundance correlated \vcll 
\vith average tempcraturc, although abun- 
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dance is also likcl!. to  harz bcen influenced sun.i\.c in lakes that are too shallow to have Although the ratios of N to P concentra-
by increases in nutrients and \vater clarin cold, well-os~genated hypolimnions. At tions both before and after our pcriod of 
(21).O n  the other hand, the lack of a clear present, these limitations confine some spe- obscnations \\ere within the range where 
effect of the lvarming on phytoplankton cies to subarctic locations in unstratified c?anophytcs would not be favored, if similar 
production indicates that the phytoplankton l'kes, although they occur much farther increases occurred in lakes that had lo\ver 
response is comples (22) .Among the at- south in thermally stratified systems where N:P  ratios, a decreasing relative abundance 
tached algae that occup! the littoral zone of cold, o ~ g e n - r i c h  hypolimnions offer mid- of cyatiophytes might be expected, because 
lakes, lvarnler temperatures appear to have summer refilgia (26) .  Clinlatic warming they are favored b!. low N:P ratios (13). 
favored fil,m~cntous green algae of the order would certainly shift northvard the south- The etfccts of climatic change on fresh-
Zygncmatalcs, sinlilar to  those observed in ern boundan. for the occurrence of these \vatcrs have bcen largely disregarded in ma- 
the early stages of 1,kc acidification. Maxi- species in unstratificd I'kcs. It \vould also jor global change programs. Obviously, they 
muun rates of photosynthesis in epilithic estirpate them from small lakes \vherc deep- must be included, because freshwaters are 
algae are also increased by higher lake tem- ening of the thermocline would destroy already scarce in many regions of the world, 
perature (23). cold, os-ygen-rich h!~polimnions. E l m  and they are a key element in the maintc- 

The increased \vatu temperature that \ve though the estirpated huna  might be re- natlce of nonmarine organisms, including 
observed would be sufficient to extirpate placed by \\arm-water assemblages, it is by man. The disappearance or  warming and 
some temperature-intolerant spccics from no means certain that fisheries of compara- increased chemical concentrations of boreal 
some boreal lakes. A number of cold stcno- ble value or ecosystems of comparable diver- freshwaters could cause the extirpation of 
thermic glacial relicts (24) arc unable to s i n  would be reestablished quickly. cold lvater species assemblages that include 
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Fig. 1. Records of physical. chemical, and biological v~riables at the nunofYfrom the 1.ake 239 \vatershcd (solid line) and \\.ater renenal tinic for 
Esperirnental L k e s  Area, nortli\vcstern Ontario, from 1969 o r  1971 the lake (T, the dashed line). ( F )  Mean auinal volunc-\veiglited conccntra- 
through 1988. ( A )  ,\lean ailiual air temperature at Rawson Lakc mctcoro- tions of Ca and sulfate in L k e  239. Similar increases Lvcrc obscn-ed in ,Mg, 
logical station in the \vatcrshcd of I.& 239. ( 8 )Volumc-corrected average K, Na. 'uid CI. ( G ) Mean annual volume-~vcighted concentration of total 
lake temperature of Lakc 239 during the ice-free pcriod. Each of the spikes dissolved N (TDN)  (H) r\verage sccci disc readings in the ice-free season. ( I)  
is a plot of monthly kvater temperatures in the ice-free scason for a suigle A\ cragc ~ v i n d  speed in the ice-free season rneasurcd 10 ni above ground at 
year. The jagged line connects rncans of tcniperaturcs fro111 the ice-free Ra~vson Lake meteorological statlon. (J)Average thcrmoclinc depth in the 
scason. The hori~ontal  dashed linc is the mean ternpcrarurc for rcc-free ice-free season. (K)Average phytoplankton biomass in the cp~linuiion in the 
seasons for the entire pcriod. (C) l>uration of thc ice-free pcr~od  for Lake ice-free season (solid linc) and Simpson's index of diversit\. (dashed linc). (L)  

prccipitat~on at the Ra\vson 239. (D) A ~ ~ n u a l  1.akc station. (E) Annual S n o n  depth at the end of hlarch in the I.& 239 u~atcl.shcd. 
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some of the ~vorld's most \,xlu~blc fishcrlcs 
( 2 7 ,28). 
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Phytoplankton were dominated by species of Chry-
sosphaerella, Dinobryon, and Tabellaria throughout the 
20-year period. These genera are typical of natural 
lakes in the area [(8); H. J. Kling and S. K. 
Holmgren, Can. Fish. Mar. Serv. Tech. Rep. 331 
(1972)]. 

21. The effects of nutrients, light, and temperature on 
phvtoplankton are discussed in D. W. Schindler, 
Limnol. Oceanogr. 23, 478 (1978). 

22. Phytoplankton production was measured with 14C 
[J. A. Shearer, E. R. DeBruyn, D. R. Declercq, D. 
W. Schindler, E. J. Fee, Can. Fish. Aquat. Sci. Tech. 
Rep. 1341 (1985)]. The photosynthesis per unit light 
at submaximal rates and the rate of maximum pho­
tosynthesis varied synchronously in lakes of the area 
spanning several orders of magnitude in size. The 
total magnitude of variation was a factor of 2 to 3 in 
all cases. These results suggest that the responses of 
phytoplankton production in small lakes like Lake 
239 can be extrapolated to lakes of all sizes in the 
same region (E. J. Fee and R. E. Hecky, unpub­
lished data). However, as in the ELA lakes, the 
variations in phytoplankton production in larger 
lakes showed no significant correlation with climatic 
variables. 

23. The distribution of filamentous green algae in the 
shallows of Lake 239 has been mapped annually 
during the late summer (M. Jackson, personal com­
munication). During 1982 to 1987, epiphytic cov­
erage by filamentous green algae (chiefly of the 
genus Mougeotia) has been proportional to epilim-
netic temperature. The species changes resemble 
those seen during early acidification of Lake 302S 
[M. A. Turner et al., Can. J. Fish. Aquat. Sci. 44 
(suppl. 1), 135 (1987)]. Increasing concentrations 
of atmospheric C 0 2 are also expected to cause a 
slight increase in the photosynthesis of epiphytic 
algae in softwater lakes (M. A. Turner, unpublished 

W ITHIN A FEW YEARS AFTER THE 

acceptance of plate tectonics, 
Hays and Pitman (1) among oth­

ers, pointed out that the well-documented 
Cretaceous transgression occurred at ap­
proximately the same time as an increase in 
the spreading of oceanic plates. Since then, 
the prevailing view has been that increased 
rates of plate spreading give rise to an 
increased volume of oceanic ridges and a 
decreased volume of ocean basins (2). For a 
constant volume of water, continental plat­
forms have been thought to flood during 

Department of Geological Sciences, University of Mich­
igan, Ann Arbor, MI 48109. 

data). No stimulation of phvtoplankton photosyn­
thesis due to increased C 0 2 is expected [J. A. 
Shearer and E. R. DeBruvn, Water Air Soil Pollut. 
30, 695 (1986); E. R. DeBruyn, unpublished data], 
From 1981 to 1988, maximum annual rates of 
photosynthesis by epilithiphyton in Lake 239 were 
also related to maximum epilimnion temperature 
(M. A. Turner, unpublished data). Contrary to our 
initial expectations, epilithic respiration was unaf­
fected by epilimnion temperature. 

24. Organisms that may be adversely affected by increas­
ing temperature include the lake trout Salvelinus 
namaycush and the opposum shrimp Mysis relicta. 
Both are important in the food chains of boreal lakes 
with oxygen-rich conditions and temperatures less 
than 16°C. Both species are also very susceptible to 
lake acidification, which is also occurring in many 
boreal lakes (25). Prolonged summer stratification 
also prolongs the period during which oxygen de­
pletion in hvpolimnions can occur [P. V. Eloranta, 
Water Res. 17, 133 (1983)]. 

25. D. W. Schindler et al., Science 228, 1395 (1985). 
26. Geographical distribution maps of fishes in lakes 

that are suitable are given by W. B. Scott and E. J. 
Crossman [Fish. Res. Board. Can. Bull. 184, 1 
(1973)]; M. J. Dadswell [Zool. II (Nat. Mus. Nat. 
Hist., Ottawa, 1974)] gives similar information for 
relict glacial crustaceans. 

27. An example of how the disappearance of key food 
organisms can disrupt fish production in boreal lakes 
is given in (25). 

28. This work was supported by the Canadian Depart­
ment of Fisheries and Oceans. P. Campbell, I. J. 
Davies, R. E. Hecky, G. Koshinsky, and H. E. 
Welch reviewed the manuscript. B. Parker assisted 
with data analysis. 
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periods of increased spreading. The determi­
nation of past variations in spreading has 
thus been viewed as an alternative method 
to estimate global eustatic sea level varia­
tions (3). This lithospheric model fails to 
conserve mass, however, because the cold 
oceanic lithosphere subducting into the 
mantle is ignored and implicitly assumed to 
disappear. With a simple model of mantle 
convection, I show that changes in plate 
velocity lead to changes in the rate at which 
cold lithosphere returns to the mantle and 
that this process leads to sea level fluctua­
tions fundamentally different in both form 
and magnitude from the lithospheric model. 
Earlier, Hager (4) pointed out some dy­
namic problems encountered in relating oce­

anic spreading rates directly to changes in 
sea level and he suggested that sea level 
could either rise or fall with increased 
spreading, depending on whether slabs are 
returned to the mantle under continents or 
under oceans, respectively. 

Failure to conserve mass is overcome with 
the use of a simple thermal-convection cal­
culation in which the oceanic lithosphere 
acts as an integral part of the overall system 
of heat and mass transfer. In a two-
dimensional rectangular region, the equa­
tions of motion, continuity, and energy are 
solved simultaneously for an infinite Prandtl 
number and incompressible fluid; a finite-
element formulation (5) is used to solve 
these equations. The technique used for 
simulating oceanic plates is similar to the 
one presented by Davies (6), except that a 
more stringent set of boundary conditions is 
used in which the entire oceanic lithosphere 
moves with horizontally uniform velocity7. 
The use of a kinematicallv imposed litho­
sphere provides a framework in which to set 
up well-posed sea level experiments. Sea 
level variations caused by variable plate ve­
locity can be directly assessed with this 
model, and thus the more circuitous method 
of a fully dynamic model (7) can be avoided. 
In order to control plate velocity with a fully 
dynamic model, the heat added to the sys­
tem or a material property must vary; at this 
exploratory stage, such a complex technique 
(although a potentially more powerful one) 
is unwarranted. 

The two-dimensional model [(#), Fig. 1, 
A to C] includes both an oceanic region, 
extending from x = 0 to x = Xc, and a 
continental region, extending from x = Xc 

to x = XT. The shaded areas in Fig. IB 
denote zones of uniformly imposed velocity. 
With a box depth of D, the models had 
XJD = 3 and XT/D = 5; these values were 
chosen so that the ratio of continental area 
to total surface area is 0.4. At both x = 0 
and x = XT, the side boundaries are re­
flecting. Because the oceanic plate has a 
uniform positive velocity, a symmetrical 
spreading ridge forms at the origin, and the 
lithosphere explicitly subducts at x = Xc; 
the continental plate has zero velocity. For 
this system with a constant viscosity 
throughout, sea level variations are com­
puted in the following way. On the top 
surface of the convecting fluid, the topogra­
phy (called the dynamic topography, wd) is 
determined from the vertical deviatoric 
stress and explicitly includes the contribu­
tions from the subsiding oceanic litho­
sphere. An isostatic component to the to­
pography, u>c, implicitly caused bv crustal 
thickness variations, is added to the area 
over the continental lithosphere. In other 
studies involving the interaction of conti-

Ridge Spreading, Subduction, and Sea Level 
Fluctuations 

MICHAEL GURNIS 

A numerical model of mantle convection shows that sea level fluctuations are not 
simply associated with temporal changes in ocean c plate spreading. In the dynamic 
model, sea level rises rapidly and then falls toward a steady value (but one still higher 
than the initial) following increased ridge spreading; this time dependence results from 
profound changes in the deep thermal structure under ocean and continent. The use of 
past variations in oceanic spreading to infer sea level fluctuations is called into 
question. With more realistic models and better continental stratigraphy, constraints 
may be placed on the viscosity structure of the mantle. 
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