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Expression of Interleukin-10 Activity by Epstein-Barr

Virus Protein BCRF1

Di1-Hwei Hsu, RENE DE WAAL MALEFYT, DAVID F. FIORENTINO,
MINH-NGOC DANG, PAULO VIEIRA, JAN DEVRIES, HERGEN SPITS,
TiMoTHY R. MOSMANN,* KEVIN W. MOORET

Cytokine synthesis inhibitory factor (CSIF; interleukin-10), a product of mouse T2
T cell clones that inhibits synthesis of cytokines by mouse Tyl T cell clones, exhibits
extensive sequence similarity to an uncharacterized open reading frame in the Epstein-
Barr virus BCRF1. Recombinant BCRF1 protein mimics the activity of interleukin-
10, suggesting that BCRF1 may have a role in the interaction of the virus with the

host’s immune system.

NTERLEUKIN 10 (IL-10) 1s A cyro-

kine produced by one class of mouse

helper T cell clone (TH2) that inhibits
synthesis of cytokines [notably interferon-y
(IFN-vy)] by activated TH1 clones (1). Be-
cause TH1 cells preferentially mediate de-
layed type hypersensitivity (DTH) and mac-
rophage activation (2), whereas TH2 cells
provide superior help for B cell (antibody)
responses (3), IL-10 may represent a mecha-
nism whereby TH2 cells can inhibit the
effector functions of TH1 cells. This possi-
bility could help explain why DTH respons-
es and antibody responses are often mutual-
ly exclusive (4).
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Complementary DNA clones that encode
mouse IL-10 (mIL-10) (5) reveal that the
mature, secreted IL-10 polypeptide has ap-
proximately 70% amino acid identity to an
uncharacterized open reading frame in the
Epstein-Barr virus (EBV) BCRF1 (6). We
therefore cloned and expressed the BCRF1
gene, and demonstrated that the expressed
BCRF1 protein, like IL-10, inhibits IFN-y
synthesis by activated lymphoid cells.

As a source of BCRF1 DNA, we used
cither whole EBV genomic DNA prepared

Table 1. BCRF1 inhibits IFN-y synthesis by
antibody to CD3 (anti-CD3)—stimulated PBMC.
Occasionally enhancement by IFN-y synthesis by
COS-7 (mock) supernatant was observed (experi-
ments 2 and 3). This result was not uniformly
obtained among various donors (experiment 1).

IFN-y (ng/ml)
Stimulation ~ Experi- Experi- Experi-
ment ment ment

1 2 3
None <0.30 <030 <0.30
Anti-CD3 1865 395  7.87
Anti-CD3 + BCRF1 <030 1.04 <0.30
Anti-CD3 + mock 1929 9.00 14.67

from infectious virus isolated from the mar-
moset cell line B95-8 (7), or plasmid sub-
clones of the EBV Bam HI C fragment (6).
The predicted protein-coding region of the
BCRF1 gene (5, 6) was amplified by poly-
merase chain reaction (PCR) with oligonu-
cleotide primers that also contained Eco RI
sites for subsequent cloning into a modified
form of the pcDSRa296 expression vector
(8). The BCRF1 insert in the expression
plasmid used in these experiments was de-
rived from the Bam HI C fragment sub-
clones, but EBV genomic DNA isolated
from infectious virus also gave a PCR-am-
plified fragment of the expected size. The
complete DNA sequence of the resulting
BCRF1 insert was determined and was
identical to the published sequence (6).
COS-7 cells transiently transfected with this
plasmid were cultured in the presence of
[”S]mcthxomnc, with or without tunicamy-
cin B, (TcB;) (5), and supernatants were
analyzed by SDS—polyacrylamide gel elec-
trophoresis (SDS-PAGE) (Fig. 1). The 3S-
labeled supernatant from BCRF1-express-

ing cells contained an ~17 kD polypeptide
not present in supernatants from mock-
transfected cells. The BCRF1 polypeptide is
approximately the same size as the unglyco-
sylated form of mIL-10. The mobility of
BCRF1 in SDS-PAGE was not altered
when TcB, was included in the culture,
suggesting that, unlike mIL-10 (5), BCRF1
contains little or no N-linked oligosaccha-

ride. Because BCRF1 lacks the N-linked -
glycosylation site at Asn'! of mIL-10 (),

BCRF1

: mCSIF BCHH Mock

- l!l“! .

Fig. 1. Expression of the BCRF1
gene (22). Lanes show either total
35S-labclcd COS-7  supernatants

(mCSIF, BCRFL, mock) or im- -°

mCSIF \
mCSIF | _BGRF1

-30
— -215

munoabsorbed mCSIF or BCRF1 143 = ™o ~143

as indicated. *, Immunoabsorption

was carried out with preimmune rat -+ -+ - + - = + = = TunicamycinB,
serum (23). SXC 1,2,4 are mono- = mlslal el g g mow =oe NG04
clonal antibodies to rat mIL-10 (9). e = = = 4+ 4 + - RataBCRF1
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Fig. 2. BCRF1 inhibits IFN-y synthesis by an
antigen-stimulated mouse THI1 clone. Mouse
IFN-y concentration (nanograms per milliliter) is
shown as a function of the amount of BCRF1
(A), mIL-10 (@), or mock (O, A) supernatants
introduced into the culture. The mIL-10 cDNA
clone F115 was used for expression of the mouse
cytokine in COS-7 cells. The TH1 clone
(HDK.1) was cultured with trinitrophenol-modi-

fied keyhole limpet hemocyanin and syngeneic

(BALB/c) spleen cells for 36 to 44 hours; super-
natants were harvested and tested for IFN-y by
ELISA as described (1). Error bars show standard
deviations of triplicate samples. These data have
been reproduced in more than a dozen experi-
ments.

these results suggest that Asn'' may be the
principal site of attachment of N-linked
carbohydrate in mIL-10.

Rat monoclonal antibodies specific for
mIL-10 (5, 9) did not recognize BCRF1 in a
solid-phase radioimmunoabsorption assay
(Fig. 1). However, a polyclonal rat antise-
rum against COS-7-BCRF1 supernatant
contained antibodies that immunoabsorbed
BCRF]1, but lacked detectable cross-reaction
with mIL-10 in this system. Thus, despite
the substantial similarity between BCRF1
and mIL-10, no antibodies that cross-react
with the two cytokines have yet been identi-
fied.

Mouse IL-10 inhibits IFN-y synthesis by
an antigen-stimulated mouse TH1 clone in
the presence of syngeneic antigen-present-
ing cells (1, 5). Like mIL-10, BCRF1 inhib-
ited IFN-y synthesis in this assay (Fig. 2).
The slopes of the titration curves and maxi-
mum extents of inhibition by supernatants
containing mIL-10 and BCRF1 were gener-
ally similar. BCRF1 therefore has IL-10—

like activity on mouse cells.
Whether BCRF1 could exert a similar
effect on IFN-y synthesis by human cells

- was tested by stimulating human peripheral

blood mononuclear cells (PBMC) with ei-
ther phytohemagglutinin (PHA), antibodies
against the T cell receptor for antigen
(CD3), or IL-2 in the presence of COS-7
supernatants containing BCRF1, mouse IL-
10, or control supernatants from mock
transfections (5). BCRF1 inhibited IFN-y
synthesis in cultures of PHA- and IL-2—
stimulated human PBMC (Fig. 3). BCRF1
also inhibited IFN-y synthesis induced by
antibodies to CD3 (anti-CD3) (Table 1). In
contrast, mIL-10 did not have activity on
human cells in this system at the concentra-
tions tested (10). Similar results are also
observed with the RNA (Fig. 3B): BCRF1
inhibited the amount of IFN-y mRNA that
was detected in stimulated human PBMC.
Control experiments in which an actin
probe was used established that the amount
of RNA remained relatively constant in
these cultures (Fig. 3B). Thus, BCRF1 has
IL-10-like activity on both mouse and hu-
man cells.

Natural killer (NK) cells, rather than T
cells are the major source of IFN-vy in hu-
man PBMC stimulated with either PHA or
IL-2 (11). Therefore, the ability of BCRF1
to inhibit IFN-y synthesis by a mouse T cell
clone, anti-CD3-stimulated human PBMC,
and by PHA- or IL-2-stimulated human
PBMC suggests that this cytokine may in-
hibit IFN-y synthesis not only by T cells,
but also by NK cells.

The results reported here and elsewhere
(5, 10) suggest that BCRF1 may represent a
processed viral homolog of the cellular IL-
10 gene. The observation that BCRF1 has
functional IL-10 cytokine activity suggests
that it could participate in the interaction of
the virus with the host’s immune system.
Whereas the control of persistent EBV in-
fection is probably mediated principally by
classical MHC-restricted cytotoxic T cells
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Fig. 3. BCRF1 inhibits IFN-y synthesis by activated human PBMC. (A) Effects of BCRF1 (A), mIL-
10 (M), or mock (O) COS-7 supernatants on IFN-vy synthesis in human PBMC cultures stimulated with
PHA (left) or IL-2 (right) (24). Error bars and numbers of experiments are as in Fig. 2. (B) BCRF1
inhibits the amount of IFN-y mRNA present in PHA-stimulated human PBMC. The figure shows the
same RNA blot filter probed with an IFN-y cDNA probe (left) or mouse B-actin (right) (25).
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(12), IEN-vy inhibits the early stages of gen-
eration and outgrowth of EBV-infected cells
in vitro (13). NK cells also appear to partici-
pate in the response to EBV in the early
stages of infection (14);, therefore the possi-
bility that BCRF1 may inhibit IFN-y syn-
thesis by NK cells is suggestive. We there-
fore propose that BCRF1 may have a func-
tional role during the acute stage of EBV
infection of the target cell. In fact, the
BCRF1 gene is transcribed in the late phase
of the lytic virus cycle (15). Whereas BCRF1
expression is not detected by RNA blot in
latently infected cells (15-17), we have de-
tected BCRF1 RNA by PCR in four of
seven EBV-transformed B cell lines (17-19).
This could be caused by a small proportion
of latently infected cells spontaneously en-
tering the lytic cycle. Thus, BCRF1 may
exert a protective effect during the lytic cycle
when both the early and late class of viral
proteins are produced by the infected cell
(20).

These results, along with others (5, 21)
suggest the possibility that expression of
captured genes encoding immunoregulatory
proteins could be a mechanism used by
other viruses, microbial pathogens, or para-
sites in their interactions with the host’s
immune system.
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10% of culture volume. Cells were harvested after
24 hours and total RNA was prepared as described
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Technical Comments

Does Diphtheria Toxin Have Nuclease Activity?

The report by M. P. Chang et al. (1)
proposing a “second pathway” of cell killing
by diphtheria toxin (DT) by means of a
putative toxin nuclease activity contradicts
genetic evidence concerning the toxin killing
mechanism. Biochemical studies (2) demon-
strate that DT inhibits cellular protein syn-
thesis by adenosine diphosphate (ADP)-
ribosylating and thus inactivating protein
synthesis elongation factor 2 (EF-2). Muta-
tions in the EF-2 gene producing amino
acid substitutions near the site of ADP-
ribosylation of the factor render the cell
resistant to the biologic effects of the toxin
(3). Cellular resistance to DT is also caused
by mutations in the pathway of enzymes
that synthesize diphthamide, the unique
posttranslational histidine derivative in EF-2
that is ADP-ribosylated (4). Cells bearing
these mutations are unaffected by the intra-
cellular production of otherwise lethal levels
of the catalytic DT fragment A (5). In these
mutant cells toxin resistance results from
alterations in EF-2 that prevent its ADP-
ribosylation by toxin. Conversely, a muta-
tion producing a single amino acid substitu-
tion in DT abolishes its ability to ADP-
ribosylate EF-2 and vyields a nontoxic
molecule (6). Thus, cell killing by DT re-
quires ADP-ribosylation of EF-2, and fail-
ure to ADP-ribosylate EF-2 prevents killing.
The genetic evidence therefore demonstrates
that there is only one biologically relevant
pathway of cell killing by DT.

James W. BODLEY
Department of Biochemistry,
University of Minnesota,
Minneapolis, MIN 55455
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The potent toxicity of diphtheria toxin
(DT) is widely attributed to its ability to
catalyze the adenosine diphosphate (ADP)—
ribosylation of elongation factor 2 (EF-2)
resulting in the inhibition of protein synthe-
sis (1). Recently, M. P. Chang et al. (2)
proposed a second cytotoxic pathway for
DT. They reported that DT exhibits a nucle-
ase activity that is stimulated by Ca*" and
Mg?*, is susceptible to inhibition by anti-
toxin, and migrates with the A subunit of
the toxin. They further suggest that DT-
induced cell lysis is not simply a conse-
quence of protein synthesis inhibition, but
may instead involve direct chromosomal at-
tack by intracellular toxin molecules. While
this is an intriguing proposal, it does not
explain why cells that cannot be ADP-ribo-
sylated because of mutations in EF-2 are
resistant to DT (3).

It was observed that the DT used to make
DT-based immunotoxins contained nucle-
ase activity, whereas the purified immuno-
toxins had no detectable nuclease activity.
Since DT-based immunotoxins are subject-
ed to purification by high-performance lig-
uid chromatography (HPLC) gel filtration,
the loss of nuclease activity could be the
result of either the chemical linkage with an
antibody or the HPLC purification step. To
test this hypothesis, we obtained DT from
one of the same sources used by Chang et al.
(2) and chromatographed it on a TSK-3000
gel filtration HPLC column, collected the
DT peak, and evaluated the nuclease activi-
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