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Inhibition of the Complement Cascade by the Major
Secretory Protein of Vaccinia Virus

GiIrIsH J. KotwAL,* STUART N. Isaacs, ROBIN MCKENZIE,
MICHAEL M. FRANK, BERNARD Mosst

The complement system contributes to host defenses against invasion by infectious
agents. A 35-kilodalton protein, encoded by vaccinia virus and secreted from infected
cells, has sequence similarities to members of a gene family that includes complement
control proteins. Biochemical and genetic studies showed that the viral protein binds
to derivatives of the fourth component of complement and inhibits the classical
complement cascade, suggesting that it serves as a defense molecule to help the virus
evade the consequences of complement activation.

HE COMPLEMENT SYSTEM IS COM-

posed of more than 20 plasma pro-

teins that participate in host defenses
against infectious agents. The proposed
antiviral mechanisms of complement com-
ponents include virus neutralization and op-
sonization, lysis of virus-infected cells, and
amplification of inflammatory and specific
immune responses (1). Some viruses may
have evolved defenses against the comple-
ment system. The envelope glycoprotein gC
of herpes simplex viruses types 1 and 2 acts
as a receptor for fragment C3b of the third
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component of complement and thereby
modulates the alternative complement path-
way in vitro (2). Epstein-Barr virus, another
herpesvirus, also may regulate activation and
processing of the third component of com-
plement (3). The 35-kD major secretory
protein of vaccinia virus, a poxvirus, con-
tains conserved elements of the 60 amino
acid repeating unit of structurally related
eukaryotic proteins with the greatest similar-
ity to a human protein (C4bp) that binds
the C4b fragment of the fourth component
of complement and inhibits the classical
pathway of complement activation (4).

The classical pathway for activation of the
complement system starts with the binding
of the C1 complex via Clq to the Fc region
of immunoglobulin (Ig). Activation of
bound Cl leads to sequential cleavages of
C4 and C2, forming C4b2a, the classical
pathway C3 convertase. Cleavage of C3 by
the bound convertase activates the terminal
lytic mechanism that is common to both the
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classical and alternative pathways. We adapt-
ed the sheep red blood cell (RBC) hemolysis
assay (5) to determine whether the vaccinia
virus 35-kD major secretory protein can
regulate the complement cascade. In this
assay, IgM-sensitized sheep RBCs interact
with and activate components of the classical
complement pathway in fresh serum leading
to hemolysis. Hemolysis was inhibited by
medium from RK;; cells infected with wild-
type (strain WR) virus, but not with an
attenuated mutant (designated 6/2) that
lacks a cluster of more than a dozen genes,
including the one that encodes the 35-kD
protein (6). To determine the role of the 35-
kD protein, we constructed recombinant
vaccinia virus, vSIGK1 (Fig. 1A), with the
entire gene for the 35-kD protein and some
flanking DNA replaced by the sclectable
marker gene, xanthine-guanine phospho-
ribosyltransferase (gpt) regulated by a vac-
cinia promoter (7). A second recombinant,
vSIGK3 (Fig. 1A), had a 70-bp segment
within the 35-kD protein gene replaced by
the gpt cassette (7). Analysis of the viral
genomes confirmed the deletions and the
presence of the selectable marker in the
desired locations. A labeled 35-kD protein
was not secreted from [*S]methionine-la-
beled RK;; cells infected with either
vSIGK1 or vSIGK3, but was secreted from
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Fig. 2. Inhibition of complement-mediated hemolysis of sheep RBC. (A) Sensitized sheep RBCs were
incubated with the highest dilution of human serum that gave 100% hemolysis and concentrated (x50)
medium from cells infected with wild-type vaccinia virus (WR) or with mutants vSIGK1 or vSIGK3.
The 100% hemolysis value was obtained by addition of water. (B) Unsensitized rabbit RBCs were
incubated with C4-deficient guinea pig serum that had been preadsorbed with protein A Sepharose, at
the highest dilution that resulted in 100% hemolysis and with medium from cells infected with wild-
type vaccinia virus (WR) or vSIGK 3. Similar results were obtained with serum dilutions that resulted in
a lower percent hemolysis. (C) Sensitized sheep RBCs with bound C4 were incubated with C4-deficient
guinea pig serum and medium from cells infected with wild-type vaccinia virus (WR) or vSIGK3. In
cach panel, experiments were carried out in triplicate; the individual results differed by less than 5%, and
mean values were plotted.
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the wild-type virus—infected cells (Fig. 1B).
Also, whereas cells infected with mutant 6/2

presence of the 35-kD protein in the medi-
um of cells infected with the wild-type virus,

secreted neither the 35-kD protein nor a 12-
kD secretory protein encoded by another
vaccinia virus gene (8), cells infected with
vSIGK1 and vSIGK3 stll secreted the

smaller protein. Immunoblotting with an -

antibody to the COOH-terminal peptide
(amino acids 237 to 248), confirmed the

A
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Fig. 1. Construction and 35 = i,
characterization of vaccinia 5 M U WR6R 2 @ c éé” EE
virus mutants with inser- =~ MUWR6R22 UWReRLL

tions and deletions in the
gene encoding the major
35-kD  secretory protein.
(A) Hind III restriction en-
donuclease map of the
genome of vaccinia virus.
The left end has been en-
larged; the terminal repeat
region is indicated by verti-
cal bars; the deleted region
of the spontaneous mutant, ’

6/2, is indicated by the large shaded area; R, B, Bg, and H refer to Eco RI, Bam HI, Bgl II, and Hind
III sites, respectively. The arrow indicates the direction and position of the open reading frame
corresponding to the 35-kD protein. The filled horizontal bars indicate the sizes and locations of the
deletions in the recombinant viruses vSIGK1 and vSIGK3. (B) An autoradiograph after SDS—
polyacrylamide gel electrophoresis (SDS-PAGE) showing [**S]methionine-labeled proteins secreted by
uninfected RK 3 cells (UI) or cells infected with 50 plaque-forming units per cell of wild-type vaccinia
virus (WR), 6/2, vSIGK 1, and vSIGK3. Metabolic labeling was in minimal RPMI medium from 1 to
15 hours after infection. M, '¥C-labeled relative molecular size marker proteins in kilodaltons. (C)
Autoradiograph of a nitrocellulose membrane on to which unlabeled proteins secreted into the medium
(MED) or remaining associated with cells (CE) were transferred after electrophoresis. The membranes
were incubated with an antibody raised in rabbits to peptide Gly-Tyr-Lys-Leu-Ser-Gly-Ser-Ser-Ser-Ser-
Thr-Cys, derived from the COOH-terminus of the 35-kD protein, and '**I-labeled protein A.
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but not in medium of 6/2, vSIGK1, or
vSIGK3 (Fig. 1C).

Human complement—mediated lysis of
IgM-sensitized RBCs was progressively in-
hibited with increased amounts of medium
from cells infected with vaccinia virus WR,
but not recombinant viruses vSIGK1 or
vSIGK3 (Fig. 2A). Virtually identical re-
sults were obtained when guinea pig serum
was used as the source of complement.
Thus, the 35-kD protein is necessary for
vaccinia-mediated inhibition of the classical
complement cascade.

We also tested whether the medium from
vaccinia virus—infected cells could inhibit
the alternative pathway of complement acti-
vation, which does not require C1, C2, or
C4 components of the classical complement
pathway to make a C3 convertase. With
unsensitized rabbit RBCs and C4-deficient
guinea pig serum depleted of IgG, a test
system in which lysis is mediated by the
alternative pathway, hemolysis was not sig-
nificantly inhibited by medium from cells
infected with vaccinia virus WR or vSIGK3
(Fig. 2B). Thus, neither the 35-kD protein
nor any other protein secreted from vaccinia
virus—infected cells inhibited the alternative
complement pathway under conditions in
which the classical one was affected.

In the above experiments, hemolysis via
the classical complement pathway might be
inhibited by preventing formation or accel-
erating decay of the classical C3 convertase
or by blocking attachment of C4b to RBCs.
To evaluate the latter possibility, we first
verified that hemolysis occurred after mixing
sensitized sheep RBCs with human C4b
already bound to their surfaces (9) and C4-
deficient guinea pig serum, which provides
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Fig. 3. Copurification of
35-kD secreted protein and
complement inhibitory ac-
tivity. Serum-free medium
(OPTI-MEM 1, Gibco),
from 15 150-em® flasks of
RK 3 cells that had been in-
fected with 50 plaque-form-
ing units per cell of vaccinia
virus WR, was concentrated

2000-fold by ultrafiltration through a Diaflo membrane (Ami-
con) with a cut-off estimated to be 10 kD for a globular protein,
and dialyzed against 10 mM tris-HCI (pH 8.6), 30 mM NaCl,
and 5 mM EDTA. The concentrate was applied to a 15 by 1 cm
column of DEAE-BioGel (Bio-Rad) and the bound protein was
eluted with 30-mM steps of NaCl from 10 mM to 510 mM in .
the above buffer. (A) Silver stained SDS-PAGE of column F135
fractions. (B) Immunoblot analysis of column fractions resolved

by SDS-PAGE and incubated with antipeptide antibody and

B MSF1357 9 11 13 1517

8

% Inhibition
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/
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R Y
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"S-labeled protein A. (C) Hemolysis assay as in the legend to Fig. 2A. M, marker proteins in
kilodaltons; S, starting material; F, flow through; and 1 to 17, alternate column fractions.

the other complement components. He-
molysis was inhibited by prior addition of
medium from cells infected with vaccinia
virus WR, but not by medium from cells
infected with vSIGK3 (Fig. 2C). Thus, the
virus-induced inhibitor specifically prevents
the formation or stability of the classical C3
convertase. Preliminary experiments demon-
strated that the inhibitor accelerated the
decay of the classical convertase formed by
human C4b and C2a (10) with kinetics
similar to those of human C4bp (11).

The failure of media from cells infected
with mutant viruses vSIGK1 and vSIGK3

200+
90—
69—+
46—

30—+

Fig. 4. Binding of the 35-kD protein to RBCs
with attached C4b. The [**S]methionine-labeled
35-kD protein was purified from the medium of
vaccinia virus—infected RK; cells as described in
Fig. 3. Pooled fractions from the DEAE-BioGel
column were then applied to a Sephadex G-100
column and the fractions were assayed as in the
legend to Fig. 3. Equal samples of purified 35-kD
protein were then incubated with 10® sheep
RBCs with (lanes 2 and 4) or without (lanes 1
and 3) bound C4b in 0.2 ml of dextrose veronal
buffer for 16 hours at 4°C. The RBCs were
washed five times, suspended in distilled water,
and analyzed by SDS-PAGE (10 to 20%) and
fluorography. M, marker proteins in kilodaltons;
lanes 1 and 3, proteins associated with RBCs
without attached CAb; lanes 2 and 4, proteins
associated with RBCs with attached C4b; and
lane 5, total 33S-labeled proteins from the medium
of infected cells. Twice the number of RBCs was
applied to lanes 3 and 4 compared to lanes 1 and
2.
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to inhibit complement-mediated hemolysis
demonstrated that a functional gene encod-
ing the 35-kD protein was required for this
activity. These results do not prove, howev-
er, that the 35-kD protein is directly in-
volved in inhibition of the complement cas-
cade or that it is sufficient to mediate this
effect without other viral proteins. There-
fore, concentrated serum-free medium from
vaccinia virus—infected RK; cells was chro-
matographed on a DEAE-Biogel column
(Fig. 3). The majority of material with
complement-mediated hemolysis-inhibitory
activity eluted at 180 mM NaCl (Fig. 3C),
which correlated precisely with the 35-kD
protein, as detected by silver staining (Fig.
3A) and immunoblotting with antibody to
peptide serum (Fig. 3B). In addition, no
other proteins coeluted with the comple-
ment inhibitory activity when [**S]methio-
nine-labeled proteins secreted from virus-
infected cells were chromatographed. The
complement inhibitory activity also cocluted
with the 35-kD immunoreactive protein in a
Sephadex G-100 gel filtration step that was
introduced after DEAE-Biogel chromatog-
raphy. These results are consistent with a
direct effect of the viral protein on the
classical complement cascade.

Additional assays were used to investigate
the interaction of the 35-kD protein with
complement components. Direct binding of
the purified [**S]methionine-labeled viral
protein to cells with C4b attached to their
surfaces, but not to cells without C4b, was
demonstrated (Fig. 4). The ability of sheep
RBCs with bound C4b to adhere to human

, which have the surface
C3b/C4b receptor (CR1), is the basis of a
rosette assay (9). Medium from cells infected
with vaccinia virus WR or purified 35-kD
protein blocked rosetting, but medium from
cells infected with the vaccinia virus mutant
6/2 or Sephadex fractions without the 35-
kD protein did not. Thus, both assays pro-

vided evidence for the interaction of the 35-
kD protein with C4b.

The activity of the 35-kD major secretory
protein of vaccinia virus is consistent with
its structural resemblance (38% amino acid
identity) to the first half of C4bp (11), a
classical pathway complement control pro-
tein. C4bp’s from mouse, guinea pig, and
human plasma have subunits of about 70 kD
and exist as multimeric molecules of about
550 kD (12). These proteins bind C4b and
cause accelerated decay of the C3 convertase
by dislocating C2a and also serve as cofac-
tors for cleavage of C4 by serum factor I
(13). The vaccinia protein also has homolo-
gy with other regulators of complement
activation, including the precursor of hu-
man membrane cofactor protein (14) and
decay-accelerating factor (15), for which the
amino acid identities are 35% and 31%,
respectively.

Some vaccinia virus genes are not re-
quired for replication in tissue culture cells
and may function to enhance infection or
evade immune responses in the host animal
(16). Thus, the predicted biological role of
the 35-kD secretory protein is to diminish
the antiviral effects of the host complement
system. Consistent with this possibility, skin
lesions in rabbits produced by 35-kD pro-
tein mutants were smaller and healed more
rapidly than those caused by wild-type virus,
indicating attenuation of viral pathogenicity
(17). The significance of the 35-kD protein
in virus-host interactions is supported by the
finding of similar secretory proteins in the
media of cells infected with two other mem-
bers of the orthopoxvirus genus, cowpox
virus and ectromelia (18). Ectromelia virus,
which causes a fatal disease in mice, should
be particularly suitable for further studies of
the role of the 35-kD protein as a virus-
encoded defense molecule.
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Expression of Interleukin-10 Activity by Epstein-Barr

Virus Protein BCRF1

Di-Hwel Hsu, RENE DE WAAL MALEFYT, DAVID F. FIORENTINO,
MINH-NGoC DANG, PAULO VIEIRA, JAN DEVRIES, HERGEN SPITS,
TiMoTHY R. MOSMANN,* KEVIN W. MOORET

Cytokine synthesis inhibitory factor (CSIF; interleukin-10), a product of mouse Ty2
T cell clones that inhibits synthesis of cytokines by mouse Tyl T cell clones, exhibits
extensive sequence similarity to an uncharacterized open reading frame in the Epstein-
Barr virus BCRF1. Recombinant BCRF1 protein mimics the activity of interleukin-
10, suggesting that BCRF1 may have a role in the interaction of the virus with the

host’s immune system.

NTERLEUKIN 10 (IL-10) 1s A cyro-

kine produced by one class of mouse

helper T cell clone (TH2) that inhibits
synthesis of cytokines [notably interferon-vy
(IFN-vy)] by activated TH1 clones (1). Be-
cause TH1 cells preferentially mediate de-
layed type hypersensitivity (DTH) and mac-
rophage activation (2), whereas TH2 cells
provide superior help for B cell (antibody)
responses (3), IL-10 may represent a mecha-
nism whereby TH2 cells can inhibit the
effector functions of TH1 cells. This possi-
bility could help explain why DTH respons-
es and antibody responses are often mutual-
ly exclusive (4).

D.-H. Hsu, D. F. Fiorentino, M.-N. Dang, P. Vicira, T.

. R. Mosmann, K. W. Moore, artment of Immunolo-

' gy DNAX Rescarch Institute, 901 California Avenue,
ala‘:;‘e Alto, CA 94304.

R. de Waal M J. deVries, H. Spits, Department of

Human Immunology, DNAX Rcwl:rd\ Institute, 901

California Avenue, alo Alto, CA 94304.

*Pnesent address: Department of Immunol Univer-
of Alberta, Edmonton, Alberta, Can bgy
o whom correspondence should be addmscd

830

Complementary DNA clones that encode
mouse IL-10 (mIL-10) (5) reveal that the
mature, secreted IL-10 polypeptide has ap-
proximately 70% amino acid identity to an
uncharacterized open reading frame in the
Epstein-Barr virus (EBV) BCRF1 (6). We
therefore cloned and expressed the BCRF1
gene, and demonstrated that the expressed
BCRF1 protein, like IL-10, inhibits IFN-y
synthesis by activated lymphoid cells.

As a source of BCRF1 DNA, we used
cither whole EBV genomic DNA prepared

Table 1. BCRF1 inhibits IFN-y synthesis by
antibody to CD3 (anti-CD3)—stimulated PBMC.
Occasionally enhancement by IFN-y synthesis by
COS-7 (mock) supernatant was observed (experi-
ments 2 and 3). This result was not uniformly
obtained among various donors (experiment 1).

IFN-y (ng/ml)
Stimulation Experi- Experi- Experi-
ment ment ment
1 2 3

None <0.30 <0.30 <0.30
Anti-CD3 1865 3.95 7.87
Anid-CD3 + BCRF1 <0.30 1.04 <0.30
Anti-CD3 + mock 1929 9.00 14.67

from infectious virus isolated from the mar-
moset cell line B95-8 (7), or plasmid sub-
clones of the EBV Bam HI C fragment (6).
The predicted protein-coding region of the
BCRF1 gene (5, 6) was amplified by poly-
merase chain reaction (PCR) with oligonu-
cleotide primers that also contained Eco RI
sites for subsequent cloning into a modified
form of the pcDSRa296 expression vector
(8). The BCRF1 insert in the expression
plasmid used in these experiments was de-
rived from the Bam HI C fragment sub-
clones, but EBV genomic DNA isolated
from infectious virus also gave a PCR-am-
plified fragment of the expected size. The
complete DNA sequence of the resulting
BCRF1 insert was determined and was
identical to the published sequence (6).
COS-7 cells transiently transfected with this
plasmid were cultured in the presence of
[”S]mcthlomnc, with or without tunicamy-
cin B, (TcB;) (5), and supernatants were
analyzed by SDS—polyacrylamide gel elec-
trophoresis (SDS-PAGE) (Fig. 1). The ¥S-
labeled supernatant from BCRF1-express-
ing cells contained an ~17 kD polypeptide
not present in supernatants from mock-
transfected cells. The BCRF1 polypeptide is
approximately the same size as the unglyco-
sylated form of mIL-10. The mobility of
BCRF1 in SDS-PAGE was not altered
when TcB, was included in the culture,
suggesting that, unlike mIL-10 (5), BCRF1
contains little or no N-linked oligosaccha-
ride. Because BCRF1 lacks the N-linked
glycosylation site at Asn'! of mIL-10 (5),

mCSIF .
mCSIF BCRF1 Mock  mCSIF _ BCRF1 | BCRF1
—r I 1 r Ll E— s 1
s Ral-

Fig. 1. Expression of the BCRF1 ! S -4
gene (22). Lanes show either total 30— 00 -30
35§-labeled COS-7 supernatants ,, ._ - - 215
(mCSIF, BCRF1, mock) or im- T e
munoabsorbed mCSIF or BCRF1 43— we~ - -143
as indicated. *, Immunoabsorption
was carried out with prcimmu?::l rat - 4+ -+ - - 4 - - 4 -~ - TunicamycinB,
serum (23). SXC 1,2,4 are mono- = = = = = 4 4 4+ = = - - SXC124
clonal antibodies to rat mIL-10 (9). - = = = = = = = % + + - RataBCRA
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