thropod invasion of the land may have been
closely coupled with that of the plants,
rather than lagging behind as some authors
have suggested (4).
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Hydroxyl Radical Photoproduction in the Sea and
Its Potential Impact on Marine Processes

KENNETH MOPPER* AND XIANLIANG ZHOUT

Photochemical production rates and steady-state concentrations of hydroxyl radicals
(‘OH) were measured in sunlight-irradiated seawater. Values ranged from 110
nanomolar per hour and 12 x 107'® molar in coastal surface water to 10 nanomolar
per hour and 1.1 X 107"® molar in open ocean surface water. The wavelengths
responsible for this production are in the ultraviolet B region (280 to 320 nanometers)
of the solar spectrum. Dissolved organic matter (DOM) appears to be the main source
for -OH over most of the oceans, but in upwelling areas nitrite and nitrate photolysis
may also be important. DOM in the deep sea is degraded more readily by ‘OH (and its
daughter radicals), by a factor of 6 to 15, than is DOM in open-ocean surface water.
This finding may in part bear on major discrepancies among current methods for
measuring dissolved organic carbon in seawater.

HE HYDROXYL RADICAL (‘OH) 1s

the most reactive, photochemically

produced free radical in the environ-
ment (1-3). It plays a central role in atmo-
spheric chemistry (4), but its role in aquatic
environments is less clearly understood (3,
5). Flash photolysis studies (2) demonstrat-
ed that -OH is formed in seawater, and a few
model calculations of “‘OH production rates
and concentrations in surface seawater have
been reported (6, 7). However, there have
been no actual measurements. We evaluated
photoproduction of -OH in seawater by
two independent, well-characterized reac-
tions. The first is based on H atom abstrac-
tion from an aliphatic alcohol, methanol
(CH30H), by ‘OH. The formation rate of
the main stable product, formaldehyde
(CH,0) (8, 9), is then measured:

‘OH + CH;0H — -CH,0H + H,0O
‘CH,OH + O, — CH,O + HOy»
The other reaction, which is more specific
for ‘OH, is based on addition of ‘OH to the
aromatic (Ar) ring of benzoic acid. The

formation rates of the addition products o-,
m-, p-hydroxybenzoic acids (1, 8, 10) are
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then measured:

‘OH + H-Ar—
HO

HO-Ar + HOy»

Similar, but less sensitive, techniques have
been used to determine -OH production
rates in freshwaters (6, 7, 10). However, to
our knowledge, these techniques have not
been previously applied to seawater.
Details of experimental procedures and
controls have been presented elsewhere
(11). Samples (filtered and unfiltered) were
irradiated in quartz flasks with natural sun-
light (4 hours, solar noon, cloudless sky,
26°N). Production rates of both CH,O and
hydroxybenzoic acids were measured by lig-
uid chromatography with ultraviolet (UV)
detection. Formaldehyde was determined
with about a 20-fold greater sensitivity as its
2,4-dinitrophenyl hydrazone (12). The re-
producibility (+1o SD for repeated mea-
surements on the same sample) of -OH
production rates for coastal water (n = 10)
was <5% for the CH3;0H probe and about
10% for the benzoic acid probe. Production
rates obtained with these two different
probe scavengers agreed to within * 20%
(1o SD) for all seawater and freshwater
samples tested (11). Because of its much
higher sensitivity, we used the CH;OH
probe to measure “OH production rates in
open ocean samples where we anticipated
much lower production rates than for the
coastal samples. Photoproduction rates for
-OH were converted to steady-state concen-

- o
Ar —>
/
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trations with an experimentally determined
apparent rate constant for the reaction of
-OH with the natural scavengers in seawater.
We used standard competition kinetics tech-
niques (13) to evaluate this rate constant, as
described elsewhere (11).

We measured ‘OH steady-state concentra-
tions and photoproduction rates in different
seawater types to answer the following ques-
tions. (i) Are measured ‘OH production
rates in seawater in agreement with rates
previously predicted from models based on
known -‘OH sources, such as nitrate
(NOs7), nitrite (NO, ™), and hydrogen per-
oxide (H,O,) photolysis? (ii) How impor-
tant is ‘OH in the oxidation of dissolved
organic matter (DOM) in the sea? (iii) Are
‘OH photoproduction rates sufficiently high
to potentially affect chemical and biological
processes at the sea surface?

Steady-state concentrations and produc-
tion rates of ‘OH in different samples of
seawater are given in Table 1. Concentra-
tions of “OH in surface seawaters are one to
two orders of magnitude lower than those
reported for organic- and NO; ™ -rich fresh-
waters (6, 7, 10). Steady-state concentra-
tions and production rates of ‘OH are much
higher in upwelling and coastal waters than
in open-ocean surface water (14). From past
studies (2, 6, 7, 10, 15), the main sources of

‘OH in seawater should be photolysis of
NO;~, NO,7, and H,0O,, and Fenton-type
reactions. We measured the “OH production
rate from NOs™ photolysis in sunlight to be
3.0 x 107" molar s~ per micromolar of
NO;™, which is in excellent agreement with
the results of Zepp et al. (7) for freshwater.
The corresponding ‘OH production rates
for NO,” and H,0O, photolysis were
2.3 x 107" molar s™' per micromolar of
NO,™ and 4.1 x 107'? molar s~ per mi-
cromolar of H,O,, respectively. Photolyses
of NO;~ and NO,~ should be important
‘OH sources only in some upwelling areas,
and at times in productive coastal waters
(Table 1). Even when NO; ™ -rich deep wa-
ter from the Sargasso Sea was brought up to
the surface and irradiated on deck (Fig. 1),
only about 15 to 20% of the -OH produc-
tion rate was due to NO;~ and NO,~
photolyses. Furthermore, from the low
steady-state concentrations of H,O, (16)
and dissolved Fe and Cu (17), we calculate
that photolysis of H,O, and Fenton-type
reactions are insignificant sources of ‘OH in
seawater. When catalase was added (to de-
stroy H,O,) to coastal and open ocean
seawater, no significant change in ‘OH pho-
toproduction rates was observed. However,
in Fe-rich freshwaters, the Fenton reaction
may be a significant “-OH source (18).

Table 1. Mcasured and estimated *OH steady-state concentrations and production rates in sunlight-
irradiated scawater and freshwater; n, number of samples used for the experiment; UD, undetectable;

N.D., not determined.

“OH produc- *OH production from different sources (%)

Sample [FOH] tion rate* Oth
P x107"M x107"2M/s  NO;~ NO,~ H,0, ther
(nM/hour) (DOM)
(concentration of sources, uM)t

Open-ocean surface water 1.1 0.1 28 0.2 <1 <4 >95
(Sargasso Sea, n = 6) (10.1) (<0.05) UuD (<0.05)  (200)

Gulf Stream surface water 1.2 3.1 N.D.

(n=1) (11.2)

Deep-ocean water (Sargasso 6.3 = 0.3 159 = 0.7 19 1 3 77
Sea, >700 m, n = 7) (57.2) (10) (0.01) (0.1) (70)

Deep Gulf Stream water 5.8 14.7 N.D.

(700 m, n = 1) (52.9)

Subtropical coastal water 9.7+12 244x30 2 2 96
(Biscayne Bay, FL, high (87.8) (2.0) UD (0.2) (300)
tide, n = 4)

Subtropical coastal water 13.7 £ 1.7 34.5=*4.3 N.D.

(Biscayne Bay, FL, low (124.2)
tide, n = 5)

Temperate coastal water 10.6 26.5 N.D.
(Vineyard Sound, MA, (95.4)
n=1)

Equatorial upwelled water 7.4 18.6 3 25 3 65
(estimated) (67.0) (5) (0.2) (0.1) (200)

Coastal upwelled water 26.3 66.1 7 35 6 52
(estimated) (238) (15) (D) (0.1) (300)

10% Everglades water in 30.1 68.9 N.D.

Biscayne Bay water (n = 1) (248)

DOM-rich freshwater 840t 420 = 58 N.D.
(Everglades, n = 2) (1.5 x 10%

*+ 1g SD. tConcentrations of H,O, and DOM (mole carbon basis) were estimated from published values (16,

26). +Thus steady-state concentration was calculated with a measured scavenging coefficient of 5 X 10° s7' (15).
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From the preceding results, it is apparent
that there is a major, unknown source or
sources of *OH in scawater. DOM has been
shown to be a photochemical source for
‘OH in some freshwaters (1, 6, 7, 10, 19).
We believe that DOM is also a major source
for photochemically produced ‘OH in sea-
water. We found linear relations between
DOM absorbance (at 300 nm) or fluores-
cence [360 nm, excitation; 460 nm, emis-
sion (3)] with ‘OH photoproduction in a
large number of seawater samples in Fig. 1.
All slopes were significant at P < 0.05.
Also, addition of humic-rich freshwater to
humic-poor seawater significantly enhanced
‘OH photoproduction rates (Table 1). The
enhancement was in direct proportion to the
DOM absorbance and to the fraction of
humic-rich water present. Furthermore, the
solar-normalized action spectra for photo-
production of ‘OH in coastal seawater (Fig.
2) and for seawater containing purified hu-
mic substances (20) showed that the pho-
toactive wavelengths in the solar spectrum
responsible for this production are in the
UV-B region of 280 to 320 nm (21), which
corresponds to a 1/e light penetration depth
of about 7 m in the open ocean (22). Nearly
identical wavelengths were obtained for
photobleaching (loss of DOM absorbance)
in seawater (23).

These results suggest that the relation
between the absorbance of light by DOM
and the photoproduction of ‘OH from
DOM is not simply incidental. Photolysis of
light-absorbing sites, in particular hydro-
quinolic and phenolic moieties, within hu-
mic substances appears to be responsible in
part for ‘OH photoproduction and absor-
bance photobleaching in natural waters (19,
24).

Many sinks exist for ‘OH in seawater (2,
3,6, 7, 25). On the basis of competition
kinetics experiments (11), we estimate that
scavenging by Br~ will consume about 93%
of the ‘OH production, which is in agree-
ment with past estimates of 89 to 98% (2,
25). Thus, approximately 7% of ‘OH pro-
duced reacts directly with other components
of seawater, including DOM (25). Further-
more, reactive daughter products of ‘OH,
such as bromine-containing radicals, also
attack DOM (2).

Thus, in seawater DOM plays a dual role
as both source and sink for ‘OH. The extent
of attack on DOM depends on the pseudo—
first-order rate constant, k'poy, for the reac-
tion of ‘OH with DOM. This constant is
expected to vary with DOM source and the
history of the water. Therefore, experiments
were performed to measure k'pom for dif-
ferent seawaters. In these experiments, an
‘OH source, H,O,, was added at various
concentrations (0 to 150 uM) to coastal and
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open ocean samples and photoproduction of
identifiable low molecular weight (LMW)
products, CH,O, acetaldehyde, glyoxal, and
keto acids, was monitored:

DOM + ‘OH — LMW products
+ other products

We estimated k'poy from the initial in-
crease in photoproduction rate of products
(APRP) with increase in [-OH]ss:

d[DOM)/dt = —k'pom[DOM][-OH], =
—k'pom[*OH]ss = production rate of
products

k'pom = APRP/A[OH]

The ranges of k'pom obtained were (in units
of 10%s™") 1 to 2 for surface oceanic water,
4 to 5 for deep oceanic water, and 5 to 8 for
coastal surface water. Because the concentra-
tion of DOM (on a mole carbon basis) of
open ocean surface water is about three
times that of open ocean deep water (26),
our k' results indicate that surface DOM is
about 1/6 to 1/15 as reactive toward -OH
attack as deep-sea DOM. This finding may
explain large discrepancies, especially for
surface waters, in different methods current-
ly being used for measuring the concentra-
tion of oceanic dissolved organic carbon
(DOC) (26), since several of these methods
rely on oxidation by ‘OH and other reactive
free radicals. The reasons for the relatively
low reactivity of DOM in surface seawater
toward ‘OH are not known but may include
extensive photobleaching in the photic zone
(27) and differences in molecular size distri-
butions (26).

Reaction of ‘OH with DOM should

Steady-state [-OH]
(1018 M)

0.5 1.0 1.5 200

I AT A A A A e

Fig. 2. (W) Action spectrum 20 E
for ‘OH production in ! 102 o
coastal seawater (Biscayne - EX
Bay, Florida). (A) Action @ § 15| F 404 ‘%
spectrum  normalized to  £%9 5
downward solar irradiance 2'd F. 6 53
incident at the sea surface. A @ “‘:.’_ “ sunlight- =10 g g
logarithmic scale is used be- % o 101 normglized .
cause of the large variation § 3 108 T2
in solar irradiance between @ 2 R
280 to 320 nm (22). Details £ € L1010~ &
of the actinometry are given e L5 @
elsewhere (21, 23). = E10-12 '§
4 E 2
0 . . - . — F 10-14 ®
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speed up the degradation of biologically
refractory organic matter at the sea surface,
since LMW products from this reaction can
be readily taken up and oxidized by orga-
nisms (28). This process could affect the
geochemical cycling of organic carbon in the
sea (23, 27). We have used our estimated
ranges of k'powm; published spatial distribu-
tions of open ocean, coastal, and upwelling
regimes (29); and typical DOM concentra-
tions (on a mole carbon basis) in these
different regimes (26) to calculate that the
residence time for oceanic DOM is roughly
4 x 10* (= 30%) years. Although this value
is about six to seven times the measured '*C
age of deep-sea DOM (30), it is still signifi-
cant because our k'pom values are conserva-
tive, as only a few LMW products were
measured. In addition, our estimate is based
on attack of DOM by only -OH and its
daughter products; other DOM degrada-
tion pathways, such as direct photolysis,
which produce LMW “fragments” at even

DOM fluorescence NO3, NO,~ (uM)
(@sv) 0 5 10 NOg~
0.5 1.0 0 0.1 0.2 NO,~

‘OH from

NOZ/NO,~
— b photolysis k
E DOM-
£ 2000+ derived 4
3 -OH Total
a -OH

3000+

4000

Fig. 1. (A) Steady-state ‘OH concentrations in sunlight-irradiated Sargasso Sea water plotted against
sampling depth. Samples were brought to the surface and irradiated on deck in quartz flasks with
natural sunlight. At this station (26°00'N, 76°00'W), the mixed layer extends down to about 80 m, the
chlorophyll and NO, ™ maxima occur at 100 to 140 m, and the oxygen minimum occurs at about 800 to
900 m. The spike in the total ‘OH production curve at 100 to 140 m appears to be due entirely to NO,~
photolysis. (B) Profile of DOM fluorescence (360 nm excitation, 460 nm emission), at the same
station. The fluorescence was normalized to a quinine sulfate standard (1 QSU = 1 ppb in 0.05 M
H,S0,). (C) Profiles of NO;~ (+) and NO,™ (0) at the same station.
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higher rates (12, 23, 28), were not consid-
ered.

Photoproduction of ‘OH and its reactive
daughter products at the sea surface may
also impact upon biota residing there. Bio-
logically utilizable carbon produced from
direct or indirect attack of DOM by -OH
may enhance secondary productivity (bacte-
rial growth), especially in carbon-limited
oligotrophic waters (31), in upwelling wa-
ters, and in regions with high or increasing
UV-B light penetration. However, high
production rates of reactive free radicals can
also destroy key biomolecules in organisms
(32, 33), thereby retarding growth and en-
hancing mutation (34). On the basis of -OH
production rates up to several hundred nan-
omolar per hour (Table 1), it can be argued
that photoinhibition at the sea surface, espe-
cially in productive coastal and upwelling
waters (35), i1s in part due to ‘OH and its
reactive daughter products (33).
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Intercalation of Sea Urchin Proteins in Calcite:
Study of a Crystalline Composite Material

AMIR BERMAN, L1A ADDADI, AKE KVICK, LESLIE LEISEROWITZ,

MirrcH NELSON, STEPHEN WEINER

Sea urchin skeletal elements are composed of single crystals of calcite. Unlike their
synthetic counterparts, these crystals do not have well-developed cleavage and are
consequently much more resistant to fracture. This phenomenon is due in part to the
presence of acidic glycoproteins occluded within the crystals. By means of x-ray
diffraction with synchrotron radiation, it is shown that the presence of the protein in
synthetic calcite only slightly decreases the coherence length but significantly increases
the angular spread of perfect domains of the crystals. In biogenic calcite, the coherence
length is 1/3 to 1/4 as much as that in synthetic calcite and the angular spread is 20 to
50 times as wide. It is proposed that the presence of macromolecules concentrated at
mosaic boundaries that are oblique to cleavage planes is responsible for the change in
fracture properties. These results may be important in the material sciences, because of
the unusual nature of this material, namely, a composite based on the controlled
intercalation of macromolecules inside single-crystal lattices.

HE MINERAL PHASE OF SEA URCHIN

spines and tests is composed of fen-

estrated Mg-bearing calcite. It is a
unique material, as whole body plates and
spines up to several centimeters in length
diffract x-rays as single crystals. These skele-
tal elements are not, however, as fragile as
single calcite crystals but appear to be made
of a relatively strong material (1). Pure
calcite cleaves easily along the well-devel-
oped {104} crystal planes. Sea urchin skeletal
elements, however, break with conchoidal
(glassy) fracture, typical of amorphous ma-
terials. The protein content of these skeletal
elements is of the order of 0.5 mg per gram
of calcite (2, 3). The possibility that organic
macromolecules located within the crystals
are responsible for the unusual fracture
properties was first proposed by Merker (4).
Direct experimental evidence supporting
this proposal was obtained when calcite
crystals were grown in the presence of acidic
glycoproteins extracted from sea urchin skel-
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etons (5). The macromolecules intercalate
into single synthetic crystals, and, as a result,
their fracture properties change. These pro-
tein-crystal composites break with conchoi-
dal fractures similar to those of fractured sea
urchin skeletal elements (5). The molecular
structure of echinoderm skeletal elements
may therefore be of interest to material
scientists, as these materials are composed of
large single crystals reinforced by proteins
located within their lattice structure.

The aim of this study was to gain insight
into this unique protein-crystal composite
by determining how bulky proteins can be
incorporated into single crystals. As calcite
crystals are extremely well ordered, it was
necessary to examine their x-ray diffraction
profiles with the use of highly collimated
synchrotron radiation. The study focuses on
the internal texture of biogenic and synthet-
ic calcite crystals, in terms of the mosaic
spread and the domain size of the crystals.
The following crystals were analyzed: two
pure calcite crystals; three calcite crystals
containing occluded protein ranging in con-
centration from approximately 250 to 750
ppm (W/w) (6); two small sea urchin spines
and one sea urchin tooth element (7). The
diffraction data were collected at the Nation-
al Synchrotron Light Source (Brookhaven
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