
G,. which binds to mutants CD2 and EF1, is 
not measured directly in these experiments. 
Hypothetically, the G, nucleotide binding site 
may be unoccupied or may contain GDP or 
GTP. We find it likely that the GDP form of 
G, binds to photoactivated rhodopsin, and 
that the release of GDP then allows MI1 
stabilization (12). The activation step that is 
blocked in mutants CD2 and EF1 may be the 
signal that induces formation of the GTP 
binding pocket in G,. Thus, we speculate that 
mutants CD2 and EF1 bind to Gt that is 
nucleotide free. 

Many receptors that couple to G proteins 
have been identified, and deciphering the 
mechanism of G protein activation is central 
to an understanding of G protein-mediated 
signal transduction. Mutants of the p2-adren- 
ergic receptor (P-AR), which is structurally 
related to rhodopsin (13), have been studied 
in whole-membrane preparations with steady- 
state agonist binding assays. A 34-amino acid 
deletion from the third cytoplasmic loop (EF) 
of P-AR produced a receptor with a single 
high-affinity agonist state, which did not acti- 
vate adenylate cyclase (14, 15). The interpreta- 
tion of this result was that the mutant receptor 
was uncoupled from the G protein, G,. A 
seven-amino acid deletion in the same loop 
(EF) of P-AR results in a moderate impair- 
ment of the adenylate cyclase response and a 
single high-affinity agonist state (16). It was 
concluded that this receptor domain in loop 
EF might participate in the transmission of an 
agonist-induced stirnulatory signal to G,. Our 
direct demonstration of an inactive mutant 
rhodopsin-Gt complex supports the interpre- 
tation that these deletion mutants of P-AR 
bound G, to form a complex with impaired 
activity. Furthermore, the combined results of 
our and other studies (14-1 7) suggest that the 
G,-induced high-affinity agonist state of P- 
AR is analogous to the G,-induced stabiliza- 
tion of MII. The correlation between rhodop- 
sin and P-AR might be tested further by 
punfylng mutant P-ARs and studying agonist 
binding affinity and the stimulation of G, in 
artificial vesicles. Thus, the study of rhodop- 
sin-G, interactions may provide general infor- 
mation regarding transmembrane signaling, 
and our direct spectroscopic assay of purified 
rhodopsin mutants should allow a more de- 
tailed kalysis of discrete steps in the G pro- 
tein activation pathway. 
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Inhibition of HIV- 1 Infectivity by 
Phosphate-Methylated DNA: Retraction 

We recently reported (1) that phosphate- 
methylated 20-nucleotide DNA oligomers 
are able to inhibit human immunodeficiency 
virus type-1 (HIV- 1) infectivity through 
hybridization to the viral RNA or integrated 
viral DNA. The oligomers we used to test 
the biological activity of phosphate- 
methylated DNA with regard to the inhibi- 
tion of HIV-1 infectivity were synthesized 
according to the method of Moody et al. (2) 
in which methylation of natural oligomers is 
achieved by a three-step process. 

After the publication of our report (I), we 
analyzed our original samples of phosphate- 
methylated DNA with reversed-phase C18 
and strong anion exchange (SAX) high- 
performance liquid chromatography (HPLC) . 
Analysis by reversed-phase C18 HPLC is 
largely based on a difference in polarity 

between compounds, while the elution or- 
der in SAX HPLC is dictated for the most 
part by the negative charge of the com- 
pounds. Therefore, completely or partially 
phosphate-methylated DNA oligomers are 
expected to elute before their natural DNA 
counterparts in SAX HPLC, while for the 
reversed-phase C18 HPLC the order of elu- 
tion is reversed. A reversed-phase C18 chro- 
matogram and a SAX chromatogram of a 
sample of the phosphate-methylated antisense 
(-) NEF sequence are shown in Fig. 1. 

We had assumed that the first peak in the 
SAX profile represented the completely 
phosphate-methylated oligonucleotide se- 
quence. However, treatment of part of the 
sample with tert-butylaminelwater (1.: 1 vlv) 
for 16 hours at 50°C [which causes complete 
demethylation of methyl phosphotri- 
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Fig. 1. (A) Reversed-phase C18 HPLC chromatogram of the phosphate-methylated (-) NEF 
sequence. Simultaneous injection with the natural DNA counterpart indicates that the peak with an 
elution time of 19 minutes consists of natural DNA. The first peaks (at 1 to 2 minutes) correspond to 
highly polar components. (Zorbax O D s  column; detection at 254 nm; flow rate, 1.0 mlimin. Buffer A: 
0.1 M triethylammoniumacetate (TEAA) (pH = 7.0, 5% acetonitril, viv); buffer B: 0.1 M TEAA (pH 
= 7.0,50% acetonitril, viv); gradient: 0 to 5 minutes isocratic 100% A, 5 to 30 minutes linear 0 to 50% 
B). (B) SAX HPLC profile of phosphate-methylated (-) NEF. The peak at 16.5 minutes corresponds 
to natural DNA. We attribute the first peaks (0 to 5 minutes) to non-DNA compounds. Self-packed 
Zorbax SAX column, detection at 254 nm, flow rate 1.0 mlimin. Buffer A: 0.001 M KH,PO, (pH = 
6.5, 30% acetonitril, vlv); buffer B: 0.3 M KH,PO, (pH = 6.5, 30% acetonitril, viv); gradient: 0 to 5 
minutes isocratic 100% A. 5 to 30 minutes linear 0 to 80% B. 

ester systems ( 3 ) ]  showed almost no change limit being approximately 0.01%). There is 
in the SAX chromatogram or in the re- a large difference between the retention 
versed-phase C18 chromatogram. The other times of phosphate-methylated DNA and 
constructs we reported (1) showed compa- natural DNA on both reversed-phase C18 
rable HPLC profiles, with varying amounts and SAX HPLC, which we observed when 
of natural DNA and highly polar com- we used well-characterized short phosphate- 
pounds. In order to determine the identity methylated oligonucleotides. 
of all the com~ounds in the mixture, we ~ r o m  these-data we conclude that the 
repeated the synthesis protocol for the samples we used for the inhibition experi- 
"phosphate-methylated" sense (+) TAR se- ments (1) contained neither completely nor 
quence and separated the mixture into frac- partially phosphate-methylated DNA, but 
tions by different extraction and precipita- only natural DNA and several by-products 
tion steps. Analysis by reversed-phase C18 of the synthesis (pyridinium and triethylam- 
and SAX HPLC and proton nuclear mag- monium salts of p-toluenesulfonic acid). 
netic resonance (NMR) spectroscopy re- 
vealed that the highly polar compounds 
were pyridinium or triethylammonium salts 
of p-toluenesulfonic acid (compounds de- 
rived from the p-toluenesulfonyl chloride- 
mediated esterification step). Large amounts 
of natural DNA, but no phosphate-meth- 
ylated DNA, were detected (the detection 

Since some of these compounds (particular- 
ly pyridinium) displayed considerable ultra- 
violet absorption (at a wavelength of 260 
nm, extinction coefficients 5 x lo3 liter 
mol-' cm-' for pyridinium and 10 x lo3 
liter mol-' cm-' per nucleotide unit), the 
reported inhibitory concentration values 
are considerably higher than the actual val- 

ues for DNA. Moreover, there is a great 
variation in the ratio between the amount of 
natural DNA and the amount of polar by- 
products in the samples. This result con- 
trasts with earlier statements (1, 2) that the 
degree of phosphate methylation of the 
tested DNAs was 90 to 100%. 

It appears that the base-protection step in 
our synthesis protocol yielded an almost 
insoluble product, which caused low yields 
in the next steps and prevented adequate 
characterization of the intermediate prod- 
ucts. In view of the composition of the 
samples, we now believe that our hybridiza- 
tion studies (1) of the longer (more than 
nine nucleotides) phosphate-methylated 
DNA oligomers with complementary natu- 
ral DNA (by means of ultraviolet spectros- 
copy) and with yeast phenylalanine transfer 
RNA (by means of NMR spectroscopy) do 
not warrant the interpretation given in our 
report (1). There is no evidence to suggest 
that the observed antiviral effects should be 
ascribed to the phosphate methylation of 
natural DNA. 
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