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Birth of Projection Neurons in Adult Avian Brain 
May Be Related to Perceptual or Motor Learning 

Projection neurons that form part of the motor pathway for song control continue to 
be produced and to replace older projection neurons in adult canaries and zebra 
finches. This is shown by combining [3H]thymidine, a cell birth marker, and 
fluorogold, a retrogradely transported tracer of neuronal connectivity. Species and 
seasonal comparisons suggest that this process is related to the acquisition of 
perceptual or motor memories. The ability of an adult brain to produce and replace 
projection neurons should influence our thinking on brain repair. 

T HE SONG CONTROL SYSTEM OF OS- 
cine songbirds consists of several dis- 
crete nuclei including the high vocal 

center (HVC) and the robust nucleus of the 
archistriatum (RA) (1). These two brain 
regions form the backbone of the telence- 
phalic efferent pathway that controls learned 
song. HVC is remakable in that new neu- 
rons continue to be added to it in adulthood 
(2 ,  3). 

HVC includes two types of projection 
neurons: those that project to area X and 
those that project to RA (1, 3). Area X- 
projecting HVC neurons are produced dur- 
ing early development (4), as is also true for 
projection neurons in the brains of most 
warm-blooded vertebrates (5). In contrast, 
the majority of RA-projecting HVC neu- 
rons are added after hatching (4, 6). Accord- 
ing to previous reports, the latter process 
slows down by the time birds reach sexual 
maturity (4, 6). We now explore the extent 
to which new RA-projecting neurons con- 
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tinue to be added to the adult HVC. 
Twelve adult male canaries received injec- 

tions of [3~]thymidine (7), a marker of 
DNA synthesis, twice daily for 14 days. 
One-hundred and twenty-five days later (8) ,  
we injected fluorogold into the right and left 
nucleus RA by using stereotactic coordi- 
nates (4). These birds were killed 4 days later 
and their brains sectioned at 6-pm intervals; 
the sections were prepared for autoradiogra- 
phy and counterstained for anatomical detail 
(9). We scored the position and number of 
(i) neurons, (ii) fluorogold-backfilled neu- 
rons, (iii) [3H]thymidine-labeled neurons, 
and (iv) double-labeled neurons (fluorogold 
plus [3~]thymidine) within HVC with a 
computer-yoked microscope (10). 

The cell bodies of HVC neurons back- 
filled with fluorogold stand out unambig- 
uously from surrounding neuropil (Fig. 
1A). Fluorogold injections outside, but in 
the vicinity, of RA failed to label HVC 
neurons. HVC cells backfilled from RA 
with fluorogold fall into a rather homoge- 
neous size class [nuclear diameters of 
6.18 k 0.58 (mean -t SD)] and are general- 

ly smaller than area X-projecting cells (3, 4). 
The RA-projecting neurons constituted 
54% of HVC neurons (1 1). 

Many of the fluorogold-backfilled HVC 
neurons had nuclei labeled with [3~] thymi -  
dine (Fig. lB), indicating that they were 
born at the time of [3H]thymidine treat- 
ment (12). Thus, some of the canary HVC 
neurons generated in adulthood became 
RA-projecting cells. Previous work in which 
horseradish peroxidase was used as a retro- 
grade label in adult male canaries revealed 
very few new RA-projecting HVC neurons, 
and it was concluded that adult HVC neuro- 
genesis was restricted almost exclusively to 
the formation of interneurons (3). There- 
fore; in our study we had to rule out the 
possibility that fluorogold transported ret- 
rogradely from RA to HVC passed from 
projection neurons to interneurons. We in- 
jected nucleus RA of an additional five adult 
male canaries with fluorescent rhodamine 
beads; these birds were killed 4 days later. 
Beads are trapped in intracellular organelles 
and do not leak out of the cell even after 
long survivals (13). The birds had been 
treated with [3~]thymidine (7) and tissue 
was processed to preserve the fluorescent 
beads (14). Neurons double-labeled with 
silver grains over their nuclei and beads in 
their cytoplasm (Fig. 1, C and D)  were 
found in all five canaries. These observations 
confirm that RA-projecting HVC neurons 
continue to be generated in adult canary 
brain. 

Adult male canaries learn new songs sea- 
sonally (15, 16). To address the possible 
relationship between adult neurogenesis and 
song plasticity, we injected some canaries 
with [3~]thymidine in May, when song is 
stable, and some in October, when song is 
modified (7). The percentage of HVC neu- 
rons that were [3~]thymidine labeled was 
4.9 times higher in the October group 
(mean, 3.8%; range, 1.6 to 6.1%) than in 
the May group (mean, 0.78%; range, 0.23 
to 1.5%) (Fig. 2, a and b). Nevertheless, in 
both the May and October groups, more 
than half of the new neurons were backfilled 
with fluorogold (56% and 71%, respective- 
ly). Therefore, there were correspondingly 
more RA-projecting HVC neurons labeled 
with [3~]thymidine in the October group 
than in the May group (Fig. 2, a and b). 
Moreover, in 4-year-old canaries injected 
with [3~]thymidine in October, the num- 
ber of new RA-projecting HVC neurons 
was also considerably higher than in the 1- 
year-old May group (Fig. 2, a to c) (17). 
Because of the 4-month delay between 
[3~]thymidine administration &d the time 
when the birds were killed, we do not know 
whether the lower numbers of new RA- 
projecting HVC neurons after [3H]thymi- 
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dine injections in May compared to October 
are due to a lower rate of cell production or 
a higher rate of cell death. 

Zebra finches do not modie their songs 
in adulthood (18). As a hrther test of the 
relationship between adult neurogenesis and 
song plasticity, six adult male zebra finches 
(8 to 11 months old) (19) were treated with 
[3~]thymidine and fluorogold following 
the same protocol as with the canaries. 
Forty-nine percent of the zebra finch HVC 
neurons were backfilled with fluorogold, a 
proportion very similar to that observed in 
canaries. Only 1.1% of the neurons in HVC 
were labeled with [3~]thymidine and of 
these approximately one-fourth (23.4%) 
were backfilled with fluorogold (Fig. 2). 
Assuming similar survivorships of cells, the 
rate of HVC neuronal recruitment in adult 
zebra finches would seem comparable to 
that of adult canaries in May, when song is 
stable (Fig. 2). However, the proportion of 
new neurons that project to RA in adult 
zebra finches is about half that seen in adult 
canaries. 

Circuits for song learning are put together 
at the very time song models are acquired 
and imitated (16, 20); during this period, 
neurogenesis is restricted to only some song 
control nuclei and some neuronal types (4, 
6, 21). In adult male canaries, higher num- 
bers of RA-projecting neurons with a survi- 
vorship of at least 4 months are recruited in 
fall, when song is being modified, than in 
spring, when song is stable. The greater 
number of these RA-projecting neurons 

added in the fall is probably related to an 
increase in song learning. However, neurons 
that survive 4 months are also added (albeit 
at lower rates) in adult canaries and zebra 
finches at times when song appears to 
change little or not at all. If the rate observed 
in adult zebra finches were to hold for the 
entire year, then the number of HVC neu- 
rons would increase by 30% over a 12- 
month period and that of RA-projecting 
neurons would increase by 15%. The pur- 
pose of neurogenesis at times when song is 
stable remains unknown. 

HVC and RA may be involved not only 
with the production and modification of 
learned song, but also with its perception 
(22). Acquisition of new perceptual memo- 
ries for song may require new RA-project- 
ing neurons. Alternatively (or in addition), 
new RA-projecting neurons could influence 
other vocalizations such as calls (2, 23) that 
may be subject to subtle changes in adult- 
hood. 

Earlier work showed that new neurons 
are generated, migrate, and become incor- 
porated into existing circuits of the adult 
canary brain (2, 24). We have now shown 
that some of these new neurons can project 
an axon over roughly 3 mm, the distance 
between HVC and RA, and link separate 
brain regions, for example, neostriatum and 
archistriatum. This process continues even 
in 4-year-old canaries. Since the ratio of RA- 
projecting HVC neurons to other HVC 
neurons does not change between Septem- 
ber and February, and the size of HVC does 

Fig. 1. [3H]Thymidine-labeled RA-projecting HVC neurons. (A) HVC backfilled from RA with 
retrograde tracer fluorogold; there are discrete boundaries of HVC and fascicles of fluorogold-labeled 
axons that connect HVC and RA (ventro-lateral to HVC, lower right outside of this photomicro- 
graph). (B) A fluorogold-backfilled neuron in HVC also labeled with silver grains (black spots) on its 
nucleus. (C) Two HVC neurons retrogradely labeled with fluorescent rhodamine beads injected into 
nucleus RA. (D) The same field as in (C), but viewed under different filter combination to reveal 
Hoechst 33258 nuclear staining. One of the neurons filled with fluorescent beads in (C) (arrow) is 
labeled with [3H]thymidine (arrow) in (D). Scale bars: (A), 200 pm; (B) and (D) are as in (C), 10 pm. 

Canary 

Fig. 2. Proportion of all HVC and RA-projecting 
HVC neurons labeled with silver grains on their 
nuclei (7). The numbers indicate the percentage 
of all labeled neurons that projected to RA in each 
group. (a) One-year-old canaries injected with 
[3H]thymidine in May and killed in September 
(n = 4). (b) Canaries injected with [3H]thymi- 
dine in October (16 to 18 months old) and killed 
in February (n = 6). (c) Four-year-old canaries 
injected with [3H]thymidine in October (52 
months old) and killed in February (n = 2). Ze- 
bra finches (Z-finch; n = 6) were 8 to 13 months 
old at the time of [3H]thymidine treatment. 
Means 2 SEM. 

not change from year to year (25), we infer 
that over the time of our study some RA- 
projecting neurons were discarded and re- 
placed by new ones, indicating a significant - - 

degree of plasticity in a major motor path- 
way. These results should influence our view 
of the extent to which self-repair is possible 
in the adult central nervous system. 
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"From the variety of objects found here - cooking utensils, furniture, tools, games - and the multi-levels on which 
they are found, I'd say we have come across man's earliest shopping mall." 
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