
Simple Dynarnical Models of Neptune's 
Great Dark Spot 

The large amplitude oscillations of the shape of Neptune's 
Great Dark Spot are well reproduced by simple dynamical 
models of an isolated vortex embedded in a background 
shear flow. Prom the time series of the aspect ratio and 
inclination of the vortex values are estimated for the 
background shear and the mean vorticity of the Great 
Dark Spot, and a lower bound is placed on the value of 
the Rossby deformation radius. These models imply the 
existence of a planetary-scale zone of deterministic chaotic 
advection in the atmosphere of Neptune. 

T HE RECENT ENCOUNTER OF THE VOYAGER 2 SPACECRAFT 

with Neptune has revealed the presence of a large coherent 
structure in its atmosphere, dubbed the Great Dark Spot (I), 

which undergoes dramatic variations in its shape. We propose that 
the observed oscillations of the Great Dark Spot are the natural 
oscillations of a vortex in a background shear flow. 

In view of the paucity of atmospheric features on Neptune the 
vorticity cannot be measured directly. By fitting the observed 
oscillations in shape to those of sheared elliptical vortices we obtain 
estimates of the background shear and the anomalous vorticity of 
the Great Dark Spot without using any knowledge of the velocity 
fields on Neptune. The vorticity is found to be larger than that of 
the ambient flow, as is the case for the Great Red Spot on Jupiter. 
Both vortices are anticyclonic. 

We find that the latitudinal variation of the Coriolis parameter 
(the p effect) has little influence on the dynamics of the system. Our 
dynamical models suggest that the Rossby radius of deformation is 
larger than about two thirds of the diameter of the Great Dark Spot. 
Last, our models imply the existence of a planetary-scale zone of 
deterministic chaotic fluid motion in the atmosphere of Neptune. 

Voyager image analysis. We analyzed 28 projected Voyager 
images, which were taken from the same images as figure 4A of 
Smith et al. (1). The projection used was linear in latitude and 
longitude, and centered at -19.6" latitude. These data span 31 
Great Dark Spot rotation periods. The Great Dark Spot rotation 
period, namely the rotation period of the planet as defined by the 
Great Dark Spot, is approximately 18.3 hours. For comparison, the 
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radio rotation period of Neptune is 16.11 hours. 
We fit ellipses to the boundary of the Great Dark Spot with the 

aid of the SAOimage software, which allows an ellipse to be 
superimposed on the image and, with a pointer, to adjust the center, 
minor axis, major axis, and orientation of that ellipse. In most 
images we find that the shape of the Great Dark-spot is well 
represented by an ellipse (see, for instance, Fig. 1). In a few cases a 
tail is also present, but an elliptical core is still easily identified (as 
illustrated in Fig. 2); in these cases the elliptical core is taken to 
represent the vortex. Only in two images, during the ejection of the 
large tail, is the representation of the Great Dark Spot as an ellipse 
ambiguous. Table 1 gives the parameters of the fit ellipses. We 
define X(0 < X < 1) to be the ratio of the minor to major axis, the 
inverse of the aspect ratio, and specify the orientation of the ellipse 
by the angle cp between the major axis and the zonal direction, 
measured counterclockwise. 

Before settling on the manual elliptical fits, we tried a variety of 
different techniques to objectively extract the boundary of the Great 
Dark Spot from the images: clipping, gradient, laplacian, smooth- 
ing, all of these in various combinations. The boundaries deter- 
mined by these methods were judged to be unsatisfactory represen- 
tations of the Great Dark Spot as one sees it in the images. The main 
problem is caused by the presence of bright clouds which overlie the 
Great Dark Spot. These distort the boundaries determined bv the 
simple objective methods. We did not try to develop a more 
sophisticated fitting algorithm which could automatically account 
for the Presence of the clouds. 

~ e c a i s e  we had no objective method for fitting the boundary of 
the Great Dark Spot, we estimated the errors in our fits by repeating 
each fit independently several times (see Table 1). These error 
estimates rigorously o d y  represent our ability to reproduce our own 
fits. The true errors are likely to be larger. For example, we did not 
correct for the fact that the projection of the images distorts the 
shape of the Great Dark Spot. Some uncertainty is also introduced 
by the presence of the bright clouds near the boundary of the Great 
Dark Spot (as can be seen from Fig. 2). 

We note that the area of the Great Dark Suot as determined bv 
our fit ellipses is nearly constant (Fig. 3), even though our fitting 
procedure was not geared toward an accurate determination of the 
area. This would have required more careful photometry. Rather, 
our fitting procedure wasegeared solely to de;ermining the aspect 
ratio and orientation of the Great Dark Spot. The diameter of a 
circle with the same area as the Great Dark Spot, as determined by 
our fit ellipses, is D = 9842 a 57 krn, excluding the first image and 
the last two images. The fit to the first image appears anomdous, 
both in the area of the vortex and in the orientation angle. The last 
two points show a marked decrease in the area which is associated 
with the ejection of a large tail. Despite these misgivings, all of the 
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data points were used in the fits to the dynamical models presented 
in this paper. 

Dynamical models. We compare the Voyager data to a hierarchy 
of simple models of the dynamics of the Great Dark Spot. In all of 
these the Great Dark Spot is taken to be a simple vortex in a 
background shear flow. The models are quasigeastrophic (2) and 
assume piecewise constant geostrophic potential vorticity inside and 
outside the vortex. Uniform potential vorticity is commonly ob- 
sewed in numerical simdations (3) and laboratory experiments (4). 

In all of the models the dynamics is given by the material 
conservation of geostrophic potential vorticity II (5): 

with the material derivative 

where .J is the Jacobian operator and JI = JlV + JIB is the total 
stmmfbnction, with JlV the component due to the vortex and JIB 
the component due to the background shear. The respective poten- 
tial vorticities are IIv and II,, and the relative vomcities are 
qv = VZ*v and q~ = VZ+,. We adopt local Cartesian caordinates 
(x, y), comoving with the zonal mean-motion of the Great Dark 
Spot, with psit&e x eastward and positive y northward. In terms of Fig. 2. An ~ l e  of an image of the Great D& Spot with an elliptical a r e  
the streamfbnction the velocity (u, v )  is and a taiL The ellipse was fit to the core. This image is the second one from 

the top in the rightmost column in figure 4A of Smith et al. ( 1 ) .  
a* u = -- a* y = -  

a~ ax 
(3) 

Model 1-barotropic f-plane. The simplest model describes the In this model, the stmmfbnction Jlv and JIB, associated with the 
dynamics of a single layer of rotating constant density fluid in which vortex and the background, respectively, satisfies 
motions are two dimensional and quasi-geastrophic (6). This is vbv = nv vZ+, = II, known as the bmtropic fplane model. Ignoring the constant (4) 

planetary vomcity, the potential vorticity is given by II = V b ,  Thus IIv and IIB are simply the relative vorticities qv and q ~ .  We 
which is simply the relative vorticity. take the background shear flow to be constant in time and uniform 

in space, wid; an associated streamfbnction given by: 

I 
1 2  *,=-p (5) 

where s is the background shear and is also equal to the negative of 
the background vorticity qg. The background velocity u~ is a simple 
linear shear 

UB = sy (6) 

I We recall that, in this simplest case, an elliptical vortex patch is an 
exact nonlinear time-dependent solution of Eq. 1, widely known as 

I the Kida vortex (7). The state of the system is &tirely specified by A, 
the inverse of the aspect ratio, and cp. the orientation of the vortex. . . 
~ h e s e  evolve acco&ng to: 

s - " = -skSidQ d p = n K + - I - 1 + ~ ~ ~ 2 ~ 1  (7) 
dt dt 2 

where nK = qvX/(l + A)' is the angular velocity of the elliptical 
vortex patch in the absence of shear (a Kirchhoff vortex), and 
A E (1 + AZ)/(l - A'). 

The vortex orientation angle Q can rotate or oscillate depending 
on the value of s/qv, and the initial values of Q and A. We have 
shown (8) that large zones of deterministic chaotic Lagrangian 
motion can exist around such vortices. These chaotic zones can 
produce rapid mixing in the surrounding fluid. . 

Model 2-barotropic P-plane. The next model also takes into 
Fig. 1. A representative image showing the Great Dark Spot with our fit the variation of the CoriOlis parameter ellipse superimposed. The Great Dark Spot is usually well represented as an 
ellipse. l-his image to the sixth in the series preSened in figure f = 2 n  sin 6, where 21~1f-l is the Great Dark Spot rotation period 
4.4 of Smith et al. ( 1 ) .  and 6 is the latitude, which was approximately - 19.6" during the 
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Neptune encounter. The potential vorticity in this model is given by 
n = V2+ + py, where p = 2 0  cos 6/RNePtune is the derivative of 
f with respect to northward distance. This system is known as the 
quasi-geostrophic @-plane model. 

Under the assumption of piecewise constant potential vorticity n ,  
the components +v and respectively satisfy 

From the second of these equations we obtain the expression for the 
streamfunction associated with the background shear: 

whereas +v has to be determined numerically. The background 
velocity U B  associated with +B is: 

The uniform value of the potential vorticity inside the vortex is 
= qV + q~ + PY. 
Model 3-equivalent barotropic P-plane. The third model additionally 

allows for the presence of an infinitely deep lower layer rotating as a 
solid body at the 18.3-hour period of the Great Dark Spot. The 
effect of this lower layer is taken into account by defining the 
potential vorticity Il = V2+ + py - y2+, where y is the inverse of 
the Rossby radius of deformation. This model is variously known as 
the equivalent barotropic or the reduced gravity model. 

The components +, and respectively satisfy 

Note that in this model the potential vorticity associated with the 
background flow is identically zero, thus nv = n .  

For the background streamfunction, we choose the solution of 
the equation which reduces to the background streamfunction (9)  of 
model 2 in the limit y -+ 0. This gives 

with the associated velocity field 

Again, +v must be obtained numerically. 
Parameters. The unknown parameters of the models are the 

background shear s, the anomalous potential vorticity IIv, and for 
model 3, y the inverse of the Rossby radius of deformation. We note 
that p is given and at -19.6" latitude has the value 7.26 x lo-'' 
km-1 - 1  S .  

Numerical methods. In our models the gradient of potential 
vorticity is nonzero only on the boundary of the vortex, and the 
dynamics is uniquely determined by the position of that boundary. 
In model 1 the shape variations are governed by Eq. 7; in the other 
two models the evolution of the boundary must be computed 
directly from Eq. 1. 

With the exception of model 1, vortices which are initially 
elliptical do not remain elliptical. We extract an equivalent aspect 
ratio and orientation of the vortex by computing the spatial 
moments up to second order of the area enclosed by the vortex 
boundary &d then taking the aspect ratio and orientation to be 
those of an equivalent ellipse with the same moments. 

The evolution of the vortex boundary is computed with a simple 
contour dynamics scheme (9) ,  with a midpoint rule to evaluate the 
contour integrals and a Bulirsch-Stoer (10) time-stepper, w i h  a 
relative accuracy per Great Dark Spot rotation period of lo-' for 

Time (hours) 

Fig. 3. The area of the 100 
Great Dark Spot versus 
time, as determined 
from our fit ellipses. The 80 
error bars in Figs. 3, 4, 
and 5 correspond to the 
uncertainties given in E 60 
Table 1. Y 

ID 
0 
7 - 
3 40- 
a 

the integrator. Because we are primarily interested in the shape of 
the Great Dark Spot as defined by its second order and lower 
moments, we do not need high spatial resolution. The computation- 
al demands of the fitting procedure have limited us to use 50 nodes 
to discretize the vortex boundary. 

The parameters s, nV,  and y, together with the initial aspect ratio 
A. and orientation of the vortex, are determined through a 
standard minimization of X2 defined as the sum of the squares of the 
residuals weighted by the inverse of the estimated standard devi- 
ations. We use the Nelder-Mead downhill simplex algorithm to 
carry out the minimization of X2 (11). We find that the variance in 
the fits is larger than one would expect if the errors in Table 1 were 
the true errors. Because we believe the errors in Table 1 to be 

; I  - 
- - I I  ; I .  1 1 ~  TI:-l -: - 

- 1 

' 1 1 1  I i ~ l  I i 

1 
1 1  

Table 1. The orientation angle cp and the inverse A of the aspect ratio, as 
determined by our fits to the projected Voyager images. The images are 
labeled by Great Dark Spot rotation periods. During some periods there 
were no usable images of the Dark Spot (1). 

Frame cp A 
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1.0, I Fig. 4. The inverse of underestimates of the true errors. we have used the variance of the fit 
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the aspect ratio versus 
time. The data points 
from our fits to the im- 
ages are superimposed 
on the fits to the dynam- 
ical models. The solid 
line is the best fit of 
model 1. The fit for 
model 2 is indistinguish- 
able from that of model 
1. The dashed curve is 
the fit of model 3, with 
y = 0.00025 km-'. 

Flg. 5. The same as Fig. 
4 but for the orientation 
angle Q. 

Fig. 6. Best fit values 
from model 3 of the 
background shear s 
around the Great Dark 
Spot as a function of the 
ratio y* of the diameter 
of the vortex to the 
Rossby deformation ra- 
dius. 

to provide a more realistic estimate of the uncertainties in the fit 
parameters. 

Results. First, the data indicate that the elliptical shape of the 
Great Dark Spot is oscillating in both aspect ratio and orientation. 
We can describe one cycle of its oscillation as follows: beginning 
when the major axis is aligned with the zonal direction at maximum 
aspect ratio (cp = 0, minimum A), the elliptical shape rotates 
counterclockwise (4 > 0) as the aspect ratio decreases. The angle cp 
reaches a maximum while the aspect ratio continues to decrease. 
When the aspect ratio reaches its minimum the major axis is again 
aligned with the wnal direction (cp = 0, maximum A). This half 
cycle is followed by a similar one with negative inclination (cp < O), 
as the aspect ratio goes from minimum to maximum, bringing the 
vortex back to its initial configuration. 

The animated sequence of Voyager images conveys an impression 
of a rolling motion (1). The ,human eye tends to follow the ends of 
the ellipse when it is most elongated, which occurs when + > 0; this 
gives an impression of counterclockwise rotation. 

Despite its obvious inadequacies, model 1 does a remarkably 
good job of fitting the data. Simply choosing s/qv in Eq. 7 so as to 
match the maximum and minimum aspect ratio automatically gives 
the amplitude of the oscillation in orientation and the shape of both 
curves. This model appears to capture the essentia1,dynamics of the 
Great Dark Spot. 

We emphasize that the data have more structure in them than is 
simply described by a harmonic oscillation. In particular, the plot of 
A versus time has broader valleys than peaks (Fig. 4), and the plot of 
cp versus time has a noticeable saw-toothed appearance (Fig. 5). The 
simple models we have presented reproduce this structure. This is 
further evidence that these dynamical models are relevant to the 
Great Dark Spot. 

An im~ortant  result of our models is that the shape oscillations 
can onlyLbe reproduced if the vorticity of the ~ r e a ; ~ a r k  Spot is 
greater than that of the background, as is the case for the Great Red 
Spot. 

In model 1, the detailed fits give an estimate of the vorticity in the 
Great Dark S ot and the background shear. We finds = -0.954 + P - 0.045 x 10- s ' (corresponding to 46 i 2 ms-' per 10" latitude), 
qv = 1.061 i 0.017 x s-' (with cpo = 0.109 i 0.011, A. = 
0.4003 * 0.0016). The total vorticity inside the vortex is then qv + 
q, = qv - s = 2.015 i 0,100 x lo-' s-'.. 
-  or-these best fit parameters, we have carried out the linear 
stability (Floquet) analysis for the growth of two-dimensional 
perturbations on the vortex boundary (15) : we find that the vortex is 
linearly stable (we have tested all modes with azimuthal wave num- 
ber up to 100). 

Our vorticity estimates improve on the earlier values of the 
Voyager imaging team, who estimated the total vorticity of the 

Flg. 7. A PoincarC surface of section for fluid 
motion near the Great Dark Spot on Neptune. 

-6 -4 -2 0 2 4 6 The hatched region is the Great Dark Spot. The 
chaotic zone, represented by the scattered points, 

x (lo4 km) is much larger than the vortex. 
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Great Dark Spot to be 0.9 x lop5 s-'. That estimate was based on 
the apparent rolling motion, assuming that it represented fluid 
motion rather than a variation of shape. The Voyager imaging team 
(1) thus incorrectly concluded that the vorticity of the Great Dark 
Spot is smaller than the vorticity of the background, contrary to the 
situation for the Great Red Spot. 

In model 2 the variation in the Coriolis parameter with latitude (P 
effect) is included. Recall, however, that since the potential vorticity 
is taken to be piecewise uniform in this model, the vortex cannot 
lose energy by-~ossby wave radiation. We find that, within these 
limitations, the p-effect has very little influence on the evolution of 
the vortex shape for parameter values appropriate for the Great Dark 
Spot. The detailed fits are virtually identical to those of model 1. 

In model 3 we choose several values of the Rossbv deformation 
radius and, for each, fit for the same parameters as in the previous 
models. For values of the Rossby deformation radius that are larger 
than the size of the vortex, the dynamics is found to be qualitatively 
similar to that of the first two models. When the vortex becomes 
larger than the Rossby deformation radius, however, the distortion 
of the elliptical shape becomes severe. Figure 6 shows the fit values 
of the background shear s versus the ratio y* of the diameter D of 
the vortex to the Rossby deformation radius. 

The Voyager imaging team reported (1) a value of the back- 
ground shear at the latitude of the Great Dark Spot of 100 ms-' per 
10" latitude, determined from a simple linear fit to the zonal velocity 
profile as obtained from the motion of large features at the latitude 
of the Great Dark Spot and further south. The features further north 
suggest that the zonal velocity profile is better represented by a 
parabolic shape, and thus the true shear near the Great Dark Spot is 
likely to be smaller than the value reported by the Voyager imaging 
team. Taking the value of 100 ms-' per 10" latitude as an upper 
bound, we infer from Fig. 6 that y* has to be less than 1.4, and 
hence that the Rossby deformation radius is probably greater than 
approximately 7000 km (or about two thirds the diameter of the 
Great Dark S ~ o t ) .  

L C  

It has been shown (16) that vortex dynamics in the equivalent 
barotropic system (model 3) is characterized by a strong suppression 
of vorticity filamentation at large values of y*. Typically, filaments 
are observed during vortex merger only for y* < 3. The fact that 
our fits suggest a value of y* between 1 and 2 in the vicinity of the 
Great Dark Spot is consistent with the observation of filaments 
being expelled around the vortex (1) (see, for instance, Fig. 2). 

Planetarv scale chaos. The motion of individual fluid elements, 
given by Eq. 3, can be described in Hamiltonian terms, where the 
streamfunction IJJ is the Hamiltonian, and the Cartesian coordinates 
y and x of a fluid element play the role of the canonical coordinate 
and conjugate momentum, respectively. The oscillations in shape of 
the vortex imply a time-dependent streamfunction, and thus the 
motion of fluid element is governed by a one degree-of-freedom 
time-dependent Hamiltonian. This system is complicated enough 
for some trajectories to exhibit chaotic motion (17). In fact, we have 
shown (8) that there are often large regions of chaotic advection 
surrounding the sheared elliptical vortices of model 1, depending on 
the parameters chosen. It turns out that this is the case for the 
parameters determined from the fit to the oscillations of the Great 
Dark S ~ o t .  

The chaotic zones of a dynamical system are most easily exhibited 
by computing Poincark surfaces of section. For model 1 the shape 
oscillations are periodic, and a convenient Poincark section is 
generated by lookng at the fluid motion stroboscopically, that is by 
plotting the successive positions of fluid elements after every vortex 
oscillation period. A Poincark section for model 1, with the best fit 
parameters-for the Great Dark Spot, is shown in Fig. 7 (two initial 
conditions only were used to obtain this figure). The scattered dots 

indicate a chaotic zone which is enormous given the size of the Great 
Dark Spot (recall that the diameter of the Great Dark Spot is 
comparable to the size of the Earth). 

The characteristic property of chaotic motion is that nearby 
trajectories hiverge exponentially from one another. The mean 
exponential rate of divergence is measured by the Lyapunov expo- 
nent, which we have computed for the fluid motion near the Great 
Dark Spot. We find that the time scale for exponential divergence of 
nearby trajectories is approximately ten vortex oscillation periods, 
which corresponds to about 80 days since the period of the vortex 
oscillation is about 8 days. 

The calculation of the extent of the chaotic zones for model 2 and 
model 3 are too computationally demanding for us to carry out. 
However, we expect that the qualitative nature of the fluid trajector- 
ies will not change. Several important features of the fluid trajector- 
ies will be preserved. For instance, for a stationary vortex there must 
always be an infinite period trajectory which separates the fluid 
which is trapped by the vortex from the fluid which is carried away 
by the shear flow. The presence of a separtrix is a crucial ingredient 
for the presence of chaotic behavior. When time dependence, such 
as that associated with the vortex oscillations, is present, separatrices 
generically broaden into chaotic zones. For models with more 
general distributions of potential vorticity, we expect that the 
streamlines will have similar qualitative features and thus it is 
plausible to expect that chaotic zones will exist for similar reasons. In 
fact, the presence of these planetary-scale chaotic zones may provide 
a dynamical mechanism for the homogenization of the potential 
vorticity in the vicinity of oscillating vortices. 

Addendum on Jovian vortices. The Kida equations (Eq. 7) also 
provide a rather good zeroth-order model for the dynamics of 
Jovian vortices. For the Great Red Spot, there is evidence that the 
potential vorticity is in fact not uniform (both in and around the 
vortex) and that the topography of the lower layer plays an 
important role in the potential vorticity balance (12); moreover, the 
flow surrounding this vortex is a linear shear over only approximate- 
ly two thirds of the latitudinal extent of the Great Red Spot (14), 
and the size of that vortex is believed to be large compared to the 
local Rossby deformation radius. These considerations notwith- 
standing, we show that the Kida equations are able, in spite of their 
simplicity, to capture the order of magnitude dynamics for both the 
Great Red Spot and the White Oval BC of Jupiter. 

For these vortices the aspect ratio A and inclination cp appear to be 
essentially time-dependent. Requiring the solutions of Eq. 7 to be 
stationary yields a unique relation between the aspect ratio A of the 
vortex and the ratio qBiqv of the background to anomalous vortici- 
ties: 

provided the major axis is aligned with the zonal direction (cp = 0). 
The aspect ratio of the Great Red Spot is approximately 2.0 i 0.2 

(12), the average value of the anomalous vorticity is roughly 
qv = 1.7 i 1.0 x s-' (13) and, from the zonal velocity profile 
given by Limaye (14), we estimate the background vorticity to be qB 
= 1.3 i 0.2 x s-'. This yields a ratio qsiqv = 0.76 i 0.46, in 
satisfactory agreement the value qB/qv = 0.66 * 0.10 from Eq. 14. 
For the White Oval BC the aspect ratio is 1.66 i 0.10 (12), qs = 

1.3 i 0.2 x s-', and qv = 3.7 -C 2.0 x s-', so that qBiqv 
= 0.35 * 0.19. Again, this agrees well with the value 0.41 i 0.06 
from Eq. 14 required for a stationary vortex of this aspect ratio. 

Considering the simplicity of our models and the uncertainty in 
our knowledge of the vorticities, the agreement in both cases is 
good. The fact that the predictions of model 1 are in reasonable 
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agreement with the data for the Great Red Spot and the White Oval 
BC on Jupiter lends support to our application of these simple 
models to the Great Dark Spot of Neptune for which there is less 
direct velocity data. 

Finally, we point out that it would be of great interest to use the 
models we have presented here to perform fits to the "brown barge" 
type vortices on Jupiter (18), whose aspect ratios have been observed 
to vary by as rnuch as 10% over a 15-day period, and for which the 
vorticity can be directly measured from velocity vectors. 
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Structure of Ribonuclease H Phased at 2 A 
Resolution by MAD Analysis of the 

Ribonuclease H digests the RNA strand of duplex 
RNAsDNA hybrids into oligonucleotides. This activity is 
indispensable for retroviral infection and is involved in 
bacterial replication. The ribonuclease H from Escherichia 
coli is homologous with the retroviral proteins. The 
crystal structure of the E. coli enzyme reveals a distinctive 
a-f3 tertiary fold. Analysis of the molecular model impli- 
cates a carboxyl triad in the catalytic mechanism and 
suggests a likely mode for the binding of RNAeDNA 
substrates. The structure was determined by the method 
of multiwavelength anomalous diffraction (MAD) with 
the use of synchrotron data fiom a crystal of the recombi- 
nant selenomethionyl protein. 

R IBONUCLEASES H (RNASE'S H )  CONSTITUTE A FAMILY OF 

enzymes that hydrolyze RNA molecules only when hybrid- 
ized with complementary DNA strands (1). Although this 

activity is distributed broadly, the biological role of RNase H is 
poorly characterized, except in the instances of Escherichia coli and 
retroviruses. RNase H participates in DNA replication in E. coli; it 
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helps to specify the origin of genomic replication by suppressing 
initiation at origins other than the locus oriC (2, 3); along with the 
5 '  + 3' exonuclease of DNA polymerase I, it removes RNA primers 
from the Okazaki fragments of lagging strand synthesis (4); and it 
defines the origin of replication for ColEl-type plasmids by specific 
cleavage of an RNA preprimer (5 ) .  However, these do not appear to 
be vitally important activities since rnh- mutants of E. coli survive 
except in conjunction with certain other genetic defects (3, 6, 7). By 
contrast, RNase H activity is absolutely indispensable for retroviral 
replication. The RNase H of retroviruses is a component of reverse 
transcriptase (RT) (8, 9). Briefly stated, during reverse transcription 
the polymerase moiety of the transcriptase uses the genomic RNA as 
a template for synthesis of an RNAaDNA intermediate; RNase H 
then removes the RNA to free the complementary DNA strand 
which serves as the template for plus strand synthesis; and finally the 
resulting DNA duplex can be integrated into the host genome. 
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