the mutual membrane-surface and, of course, membrane-membrane attraction is the strongest, certain subclasses of the membrane components with special properties can be enriched preferentially. (One example of this involves molecules with similar hydration properties.) The resulting edge-inhomogeneities could also ultimately facilitate macromolecular insertion, membrane reorganization, and fusion.

In practical terms our findings suggest that one can generate nonsupported aligned samples consisting of lipids and other biological materials. Depending on the precise experimental conditions the resulting membrane systems should contain one, a few, or many bilayers-all essentially parallel to the surface of the probe-suspension. Surfacecatalyzed orientation of the membrane samples at the air-water interface-preferably in combination with the x-ray reflectivity technique-can prove useful for the structural investigations of the model, reconstituted, and native membranes and contribute to the clarification of the physical and physicochemical principles underlaying supramolecular reorganization and fusion at interfaces.

REFERENCES AND NOTES

- J. Als-Nielsen and K. Kjaer, *Phase Transitions in Soft Condensed Matter*, T. Riste and D. Sherrington, Eds. (Plenum, New York, 1989), p. 1ff.
- 2. N. L. Gershfeld and K. Tajima, Nature 279, 708 (1979).
- 3. G. Cevc, J. Phys. 50, 1117 (1989)
- 4. ___
- Ber, Binsen Ges, 92, 953 (1988).
 and D. Marsh, Phospholipid Bilayers. Physical Principles and Models (Wiley-Interscience, New York, New York 5.

1987), chap. 7

- K. Tajima and N. L. Gershfeld, Biophys. J. 47, 203 6 (1985).
- N. L. Gershfeld, ibid. 50, 457 (1986).
- _ and M. Murayama, J. Membrane Biol. 101, 67 (1988).
- 9. N. L. Gershfeld, Biochim. Biophys. Acta 988, 335 (1989).
- 10. P. S. Pershan, Coll. Phys. 50, C7-1 (1989).
- C. A. Helm, H. Möhwald, K. Kjaer, J. Als-Nielsen, Europhys. Lett. 4, 697 (1987); K. Kjaer, J. Als-Nielsen, C. A. Helm, L. A. Laxhuber, H. Möhwald, Phys. Rev. Lett. 58, 2224 (1987); J. Daillant, L. Bosio, J. J. Benattar, J. Meunier, Europhys. Lett. 8, 453 (1989)
- E. M. Lee, E. A. Simister, R. K. Thomas, J. Penfold, Coll. Phys. 50, C7-70 (1989).
- 13. We thank E. Burkel and F. Grey for their support as well as J. Als-Nielsen from Riso and HASYLAB at Deutsches Elektronen Synchrotron (DESY) in Hamburg for offering us their technical facilities. This study has been financed in part by the Deutsche Forschungsgemeinschaft through grants C8/SFB 266 and Ce 19/1-1 to G.C. and C9/SFB 266 to W.F.

24 April 1990; accepted 5 July 1990

Heart Rate Regulation by G Proteins Acting on the **Cardiac Pacemaker Channel**

A. YATANI, K. OKABE, J. CODINA, L. BIRNBAUMER, A. M. BROWN

Heart rate is determined by pacemaker currents, of which the most important is the hyperpolarization-activated current I_{f} . Heart rate and I_{f} are increased by β -adrenergic agonists and decreased by muscarinic agonists released from cardiac sympathetic and vagal nerves, respectively. The hypothesis that the receptors for each agonist are directly coupled to If channels by G proteins was tested. Under substrate-free conditions, preactivated G protein G_s stimulated and preactivated G protein G_o inhibited If channels of sinoatrial node pacemaker cells. These effects were mimicked by the corresponding preactivated a subunits of the G proteins. Unexpectedly, the two G proteins acted simultaneously, with G_o being the more potent. This result may explain in molecular terms the classical observation in cardiac physiology, that vagal inhibition of heart rate is much greater on a background of sympathetic stimulation.

HE MAMMALIAN HEARTBEAT ARISES from spontaneous, pacemaker currents in sinoatrial (S-A) node cells and is neurally regulated by the stimulatory, β-adrenergic effects of the transmitter norepinephrine and the inhibitory, muscarinic cholinergic effects of the transmitter acetylcholine released from the cardiac sympathetic and vagus nerves, respectively. The key pacemaker current is the hyperpolarizationactivated current If (1, 2). Muscarinic agonists decrease and β-adrenergic agonists increase $I_{\rm f}$, and it is proposed that G proteins act upon adenvlyl cyclase (AC) to change the phosphorylation of $I_{\rm f}$ channels (3, 4).

Since the heart rate can change from second to second (5), if phosphorylation and dephosphorylation of the channel cause this change, these reactions must occur at subsecond rates. This is unlikely (6), and an alternative hypothesis has been proposed in which G proteins couple these receptors to pacemaker channels by faster, more direct, membrane-delimited pathways (7). A necessary condition for the direct coupling hypothesis would be that G proteins directly regulate If channels in S-A node cells. We report here that the G protein G_s preactivated with guanosine 5'-O-(3-thiotriphosphate) (GTP γ S) (G^{*}_s) or its preactivated α subunit (α_s^*) (8) stimulated I_f channels in inside-out (IO) membrane patches excised from S-A node cells under substrate-free conditions. The preactivated G proteins G_o^{\star} and $G_i^{\star}(8, 9)$ or their respective preactivated α subunits α_0^* and α_1^* inhibited I_f channels with G_0^* being more potent. G_0^* and G_s^* or their α subunits seem to act simultaneously

on an apparently shared set of $I_{\rm f}$ channels. The simultaneous action may provide a molecular explanation for why vagal inhibition of heart rate is greater in the presence of cardiac sympathetic nerve stimulation (synergistic effect) and why cardiac sympathetic stimulation of heart rate is smaller in the presence of cardiac vagal nerve stimulation (antagonistic effect) (10).

The current $I_{\rm f}$ can be recorded from cellfree, IO membrane macropatches (11). If we assume that single-channel conductance is 1 pS, patch If originated from about 200 channels (12). While still cell-attached (CA), patch If had the same waveform and voltagedependence as whole-cell (WC) If (11) (Fig. 1A, trace a) and ran down slowly with time. Upon excision to the IO configuration, patch $I_{\rm f}$ fell immediately and then resumed its slow decline (Fig. 1, A, trace b, and B). To test whether autonomic receptors were coupled to $I_{\rm f}$ by G proteins in these cell-free patches, we added the β -adrenergic agonist isoproterenol (iso) to the pipette solution and changed guanosine triphosphate (GTP) in the bath. Concentration jumps of GTP increased If (parts c and d of Fig. 1, A and B). The effects were reversible and Mg²⁺dependent (n = 4). The time course could be determined by the difference in current between the traces before and immediately after the concentration jump of GTP. This time course indicated a delay of 50 ms and a time constant of 800 ms. Both rate and magnitude of the increase in If varied directly with the concentration of GTP; the increase could be as great as 50% (37.3 \pm 9%, mean \pm SD; n = 3). With carbachol (carb) in the pipette, the same series of tests produced almost identical results except for a change in sign (Fig. 2A); If was reduced by

A. Yatani, K. Okabe, A. M. Brown, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030. J. Codina, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.

L. Birnbaumer, Departments of Cell Biology and Molec-ular Physiology and Biophysics, Baylor College of Medi-cine, Houston, TX 77030.

31 ± 8% (n = 3). The absolute requirements for GTP and Mg²⁺ implicated G proteins in the coupling of β-adrenergic and muscarinic receptors to I_f channels. Effects due to trapping of cytoplasmic substrate were excluded by adding adenyl-5'-yl imidodiphosphate [AMP-P(NH)P] (2 mM) to the bath solution; the responses were unaltered, excluding channel phosphorylation as a mechanism. Taken together, the results supported the hypothesis that autonomic receptors were coupled to I_f by direct Gprotein pathways.

Indirect pathways are thought to link β adrenergic receptors and muscarinic receptors to $I_{\rm f}$ channels (13). In these cases, different G proteins were presumed to act on AC and, subsequently, on a shared cytoplasmic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase pathway. Our experiments suggested that there are two direct G protein pathways to $I_{\rm f}$ channels. As a further test of this hypothesis, we increased patch I_f with iso $(1 \mu M)$ in the pipette and GTP (100 μ M) in the bath and then replaced GTP with GTP γ S (100 μ M) (Fig. 1). GTP γ S produced no immediate increase in current, indicating that a maximum iso effect had been attained with GTP. Instead, patch $I_{\rm f}$ fell and continued to fall with further pulses (parts e and f of Fig. 1, A and B). When GTP_yS was added in the absence of any agonist, If also fell, but not as dramatically (5 to 10% at 100 μ M; n = 8), possibly from offsetting effects due to activation of endogenous inhibitory and stimulatory G proteins. We interpreted these results to indicate that G proteins inhibitory to $I_{\rm f}$ were dominant over stimulatory G proteins.

Fig. 1. Membrane-delimited G protein coupling of autonomic receptors to patch $I_{\rm f}$ channels. Concentration steps of GTP (100 $\mu M)$ and $GTP\gamma S~(100~\mu M)~(arrows)$ were applied with iso $(1 \ \mu M)$ in the patch pipette. Patch If was produced by hyperpolarizing test pulses of 2-s duration applied at 0.1 Hz. Holding potential was -30 mV, and test potential was -130 mV. Patch $I_{\rm f}$ never reached a steady state even with pulses of 10 s. Pulses longer than 2 s accelerated the rundown. (**A**) Patch $I_{\rm f}$ recorded in the CA mode (trace a) and after excision to cell-free, IO mode (trace b). Patch I_f is shown immediately before (trace c) and during the next (trace d) voltage-clamp pulse 100 ms after a step application of GTP. The effect of a step application of GTP γ S is shown by comparing the patch If before (trace e) and imme-

1164

Inhibition was not complete, and isosmotic substitution of Cs^+ for K^+ produced a further block of patch I_f (Fig. 1B, part g).

Our results supported a hypothesis in which different heterotrimeric G proteins directly regulate I_f channels as they do other ion channels (14). As a straightforward test, we added G_i^* , G_o^* , or G_s^* to patches containing I_f channels. G_o^* at picomolar concentrations reduced patch I_f (Fig. 2B). The effect was not apparent immediately but became apparent at the second test pulse and persisted during subsequent pulses. Exogenous G_o^* inhibited patch I_f more slowly than did GTP in the presence of carb, which acted in less than 1 s (15). Unlike the readily reversible

Fig. 2. Comparison of reversible inhibition of patch $I_{\rm f}$ produced by carb plus GTP (A) with irreversible inhibition produced by G^{*}₀(B). Patch $I_{\rm f}$ was produced by hyperpolarizing clamp pulses of 2-s duration at 0.1 Hz. Holding potential and test potential were -30 and -130 mV, respectively. (**A**) Time course of peak patch $I_{\rm f}$ after a concentration step of GTP from 0 to 100 μ M (arrow) and after wash out with GTP-free solution (arrow). (**B**) Time course of patch $I_{\rm f}$ after a concentration step of G $^{*}_{0}$ (100 pM), during wash out with G $^{*}_{0}$ -free solution (arrow) and after addition of Cs⁺ (arrow). K⁺ in bathing solution was replaced by Cs⁺. Patch $I_{\rm f}$ currents at indicated times are shown above in (A) and (B).

inhibition produced by GTP in the presence of carb (Fig. 2A), the inhibition produced by G_0^* was irreversible, as expected from the effects of preactivated G proteins on other effectors (14) (Fig. 2B), and could not be overcome by prolonged washing for as long as 5 min (n = 3). Like the carb plus GTP block, the G_0^* block was incomplete, and Cs⁺ produced a further reduction in patch If. To test the effects of different concentrations of G_{0}^{*} we measured the magnitude of the inhibition at 2 to 3 min after a step change. The effects were apparent at concentrations as low as 10 pM and became greater at higher concentrations, reaching a maximum between 80 and 160 pM. The magni-

Fig. 3. The α_s^* subunit and G_0^* act simultaneously on patch I_f channels. Hyperpolarizing clamp pulses of 2-s duration were applied to -130 mVfrom a holding potential of -30 mV, at 0.1 Hz. α_s^* was added at the first arrow in (B) and G_0^* was added at the second arrow. The time course of peak patch I_f for the entire experiment is shown in (**B**), and the individual patch I_f currents for the times indicated in (B) are shown above in (**A**). In another experiment shown in (**C**) and (**D**), preactivated G proteins were added in the opposite sequence.

diately after the step (trace f). The concentration steps were timed to deliver GTP γ S to the membrane patch 100 ms before the next voltage-clamp pulse. (**B**) The time course of peak $I_{\rm f}$ for the entire experiment shown in (A). Arrowheads show where the traces a through f in (A) were taken. K⁺ in bathing solution was replaced by Cs⁺ at (trace g).

SCIENCE, VOL. 249

tude was normalized to the peak effect and, when plotted as a function of concentration, the curve had a mean inhibitory constant (IC_{50}) of about 50 pM (n = 6). In this way, the effects of G_0^* and G_i with type 3 α subunit $(G_{i\alpha-3}^*)$ (16) were compared. G_0^* was about ten times as effective as $G_{i\alpha-3}^*$ which had an IC_{50} of about 500 pM (n = 5). Hence G_0 , which is the dominant G protein in brain, where it can gate specific types of K⁺ channels directly (9), may in S-A node cells be a pertussis toxin–sensitive substrate (17) and may couple muscarinic receptors to I_f .

A corollary of our hypothesis was that G^{*}_s should increase I_f . G_s^* or α_s^* increased patch I_f (Fig. 3A, part b) and, in the case of G_{s}^{\star} , maximum increases were produced at concentrations of 80 to 160 pM ($23 \pm 9\%$; n = 7). Following stimulation, rundown resumed its slow course, but patch If was higher than before α_s^* application (Fig. 3B). Like the effects of G_0^* , the effects of G_s^* or α_s^* were irreversible. Prolonged washing up to 5 min with control bath solutions did not reverse the increased patch If. The effects of the different preactivated G proteins were mimicked by the respective preactivated α subunits $(n = 5 \text{ for } \alpha_s^*; n = 8 \text{ for } \alpha_o^*)$. In all cases with preactivated holo-G protein or a subunits, there were no requirements for GTP, Mg²⁺ or ATP, cAMP, and cAMPdependent protein kinase at concentrations described in (13). Hence, the G* proteins or their α^* subunits produced their effects on patch $I_{\rm f}$ independently from any of the usual second messengers. By contrast to the results with α^* subunits, dimeric $\beta\gamma$ subunits at much larger concentrations of 1 to 2 nM had no effect (n = 8) (18).

The results with G^{*} and G^{*} and the experiments with agonists and GTP_yS (Fig. 1) led to the prediction that G_o^* and G_s^* should converge upon If channels. We tested this first by applying G_s^* or α_s^* and then applying Go*. Both G proteins were applied at concentrations that produced maximal effects. The α_s^* subunit produced an increase in patch If, and the subsequent addition of G_o^* produced a decrease. The decrease was not due to dissociation of α_s^* , because after G^{\star}_{o} application the currents were not reduced to the levels present before addition of α_{s}^{*} . Similar results were observed in two additional experiments. Applying the preactivated G proteins in the opposite order produced the opposite sequence of events (Fig. 3, C and D; n = 4). Since the effect on patch If of either preactivated G protein was irreversible and the combined effects were not competitive, both G proteins were probably acting simultaneously, if we assume one set of $I_{\rm f}$ channels. However, $G_{\rm s}$ and $G_{\rm o}$ may have regulated two independent sets of $I_{\rm f}$ channels. This is considered unlikely for the

7 SEPTEMBER 1990

Fig. 4. G protein regulation of I_f by direct and indirect pathways from muscarinic (MAChR) and β -adrenergic (β -AR) receptors. AC, adenylyl cyclase.

following reasons: First, G_0^* at 100 pM produced decreases of 58 ± 7% in I_f after stimulation by supramaximal concentrations of α_s^* or G_s^* (n = 3) and decreases of $37 \pm 17\%$ in controls (n = 6). If there were two independent populations of I_f channels, the effects of G_0^* should have been smaller, not larger, after stimulation by G_s^* . Second, GTP γ S produced a large reduction in I_f after stimulation by iso plus GTP (Fig. 1) (n = 4) but no discernible stimulation of I_f after inhibition produced by carb plus GTP (n = 7). If there were two independent sets of I_f channels, then stimulation should have occurred.

The minimum G protein network required to account for the convergence of muscarinic and β -adrenergic agonist effects on $I_{\rm f}$ is shown in Fig. 4. The α subunits can act on $I_{\rm f}$ directly or indirectly by way of AC, and $\beta\gamma$ subunits (arrows not drawn) may be inhibitory to the α effects on AC (19). We have not included mutually inhibitory $\beta\gamma$ effects on $I_{\rm f}$, although, by analogy with AC, they might be anticipated.

These experiments rule out $\beta\gamma$ subunits as mediators of G protein effects on If channels since, for the case of human erythrocyte G_s^* and G_{i}^{*} the same $\beta\gamma$ must produce stimulation and inhibition of $I_{\rm f}$ simultaneously. For the same reasons, an effect through phospholipase A2, arachidonic acid, and a lipoxygenase metabolite reported for muscarinic atrial K⁺ channels (20) can be excluded. Furthermore, cardiac myocytes do not have lipoxygenase activity (21). Our experiments suggest that one effector, the If channel, is regulated by two G proteins at distinct sites (22). The changes in $I_{\rm f}$ channels produced by Go and Gs may explain in molecular terms the effects on heart rate produced by the combined stimulation of the cardiac

sympathetic and vagus nerves. The dominance of the vagal effect (10) is reflected by the dominance of the inhibitory G proteins activated by GTP γ S (Fig. 1). Direct G protein coupling between autonomic receptors and $I_{\rm f}$ channels in cardiac pacemaker cells may account for the ability of the nervous system to produce its effects within a single heartbeat; indirect coupling via second messengers can account for more persistent effects.

REFERENCES AND NOTES

- T. Nakayama, Y. Kurachi, A. Noma, H. Irisawa, *Pfluegers Arch.* 402, 248 (1984); D. DiFrancesco, A. F. Ferroni, M. Mazzanti, C. Tromba, J. Physiol. (London) 377, 61 (1986); W. Giles, A. Van Ginne- ken, E. F. Shibata, in Cardiac Muscle: The Regulation of Excitation and Contraction, R. D. Nathan, Ed. (Academic Press, Troy, MO, 1986), pp. 1–27.
- D. DiFrancesco, Nature 324, 470 (1986).
- A. Noma, H. Kotake, H. Irisawa, Pfluegers Arch. 388, 1 (1980); D. DiFrancesco and C. Tromba, *ibid.* 410, 139 (1987); D. DiFrancesco, P. Ducouret, R. B. Robinson, *Science* 243, 669 (1989).
- D. DiFrancesco and C. Tromba, J. Physiol. (London) 405, 493 (1988).
- M. M. Levy and P. J. Martin, Handbook of Physiology, Section 2, The Cardiovascular System, vol. 1, The Heart, R. M. Berne, Ed. (American Physiological Society, Bethesda, MD, 1979), p. 581; M. B. Kardon, D. F. Peterson, V. S. Bishop, Circ. Res. 37, 41 (1975).
- Increases in cAMP, phosphorylase a, and phosphorylase kinase take longer than 1 s in cardiac myocytes;
 T. Powell and V. Twist, Biochem. Biophys. Res. Commun. 72, 1218 (1976);
 I. L. Brunton, J. Biol. Chem. 260, 6733 (1985);
 R. Niedergerke, Proc. R. Soc. London Ser. B 197, 333 (1977).
- 7. A. Yatani and A. M. Brown, Science 245, 71 (1989).
- J. Codina et al., Proc. Natl. Acad. Sci. U.S.A. 80, 4276 (1983); J. Codina et al., J. Biol. Chem. 259, 5871 (1984).
- 9. A. M. J. VanDongen et al., Science 242, 1433 (1988).
- R. M. Berne and M. N. Levy, in *Physiology*, S. Bircher, Ed. (Mosby, St. Louis, MO, ed. 2, 1988), pp. 451–471; G. O. Carrier and V. S. Bishop, *J. Pharmacol. Exp. Ther.* 180, 31 (1972). Nonlinearities of the current-voltage relationship of *I_t* might also contribute to these effects.
- 11. Single S-A node cells were isolated from albino rabbits by enzymatic dissociation [A. Yatani and A. M. Brown, Am. J. Physiol. 258, 1947 (1990)]. Currents from membrane patches were recorded by the patch-clamp method with a List EPC7 amplifier [O. P. Hamill, A. Marty, E. Neher, B. Sakmann, F. J. Sigworth, Pfluegers Arch. 391, 85 (1981)]. Patch pipettes had resistances of 5 to 10 megohms. Currents were low pass-filtered (-3 dB) at 0.5 to 1.0 kHz and digitized at 1 to 2 kHz. Freshly isolated cells were placed in a chamber containing intracellular-like bathing solution: 110 mM potassium aspar tate; 20 mM KCl; 2 mM MgCl₂; 5 mM EGTA; and 5 mM Hepes, pH 7.3, with tris base. For Mg^{2+} -free bathing solution, EGTA was replaced by EDTA. To exclude channel phosphorylation, AMP-P(NH)P (2 mM) was present in all experiments unless otherwise noted. Other nucleotides were added to the bathing solution when required. Nucleotides were from Bochringer Mannheim; other chemicals are from Sigma. The patch pipette solution was 70 mM NaCl; 70 mM KCl; 1 mM MgCl₂; 1.8 mM CaCl₂; 2 mM MnCl₂; 1 mM BaCl₂; and 5 mM Hepes, pH 7.3, with tris base. The catalytic subunit of cAMPdependent protein kinase II (C subunit) was activat-ed with 0.5 M dithiothreitol. All experiments were done at room temperature (20° to 22°C). All test agents were applied by the concentration-clamp method, which after a dead time of 50 ms changed solutions at the membrane within 10 ms [N. Akaike et al., J. Physiol. (London) 379, 7 (1986); (7)].

- DiFrancesco (2) reported a single-channel conductance of about 1 pS. Patch *l*_f was about 20 pA at -120 mV and had an extrapolated null potential of -20 mV. Assuming an open probability of 1.0, the channel density was about 200 per macropatch.
- 13. We have confirmed, in excised patches, the results of DiFrancesco and Tromba (4) in WC experiments that phosphorylation increases I_t . When a solution of ATP (2 mM), cAMP (100 μ M), and cAMP-dependent protein kinase (1 μ g/ml) was added to the bath, patch I_t was increased by 62.5 \pm 15% (n = 4). This phosphorylating solution was ineffective when it was Mg² · free (n = 6).
- tive when it was Mg^{2} (rec (n = 6)). 14. A. M. Brown and L. B. Birnbaumer, *Annu. Rev. Physiol.* **52**, 197 (1990).
- 15. The slowness of the effect is seen in all reconstitution experiments with preactivated exogenous G proteins or their α subunits and may be due to a reduced rate of association between the preactivated G proteins and ion channels in excised patches.
- R. Mattera et al., J. Biol. Chem. 264, 465 (1988); A. Yatani et al., Nature 336, 680 (1988).
- N. M. Scherer et al., Arch. Biochem. Biophys. 259, 431 (1987); N. M. Nathanson, Annu. Rev. Neurosci. 10, 195 (1987); If G_{in-3} were present in greater

amounts than G_{0} , then $G_{i\alpha-3}$ could mediate the inhibition.

- Sources and purification of βγ dimers from human erythrocytes, bovine brain, and human placenta are described in K. Okabe *et al.*, J. Biol. Chem., in press.
- A. Gilman, Annu. Rev. Biochem. 56, 615 (1987).
 D. Kim et al., Nature 337, 557 (1989); Y. Kurachi et
- al., ibid., p. 555.
 21. C. M. Hohl and R. Rosen, *Biochim. Biophys. Acta* 921, 356 (1987); A. Yatani, K. Okabe, L. Birnbaumer, L. Brown, *Am. J. Physiol.* 258, H1507 (1990).
- 22. It is possible that two different subunits of I_t could each be regulated by a different G protein. In this case the allosteric changes on I_t would be produced by the subunit proteins rather than the G proteins themselves. Nonetheless, the changes on I_t would be allosteric.
- 23. Supported in part by NIH grants HL36930 and HL39262 to A.M.B., and DK19318 and HL31164 to L.B. We thank J. Meyers for technical assistance and D. Witham, G. May, and J. Breedlove for manuscript preparation.

22 March 1990; accepted 26 June 1990

Odor Stimuli Trigger Influx of Calcium into Olfactory Neurons of the Channel Catfish

Diego Restrepo,* Takenori Miyamoto, Bruce P. Bryant, John H. Teeter

Olfactory transduction is thought to be mediated by a G protein-coupled increase in intracellular adenosine 3',5'-monophosphate (cAMP) that triggers the opening of cAMP-gated cation channels and results in depolarization of the plasma membrane of olfactory neurons. In olfactory neurons isolated from the channel catfish, *Ictalurus punctatus*, stimulation with olfactory stimuli (amino acids) elicits an influx of calcium that leads to a rapid increase in intracellular calcium. In addition, in a reconstitution assay a plasma membrane calcium channel has been identified that is gated by inositol-1,4,5-trisphosphate (IP₃), which could mediate this calcium influx. Together with previous studies indicating that stimulation with olfactory stimuli leads to stimulation of phosphoinositide turnover in olfactory cilia, these data suggest that an influx of calcium triggered by odor stimulation of phosphoinositide turnover may be an alternate or additional mechanism of olfactory transduction.

NTERACTION OF ODORS WITH RECEPtor proteins on the membrane of olfactory cilia is the first of a sequence of biochemical events that leads to the firing of action potentials and conveys information to the olfactory bulb (1, 2). By coupling with G proteins (3-6), these receptors activate cAMP formation (3, 7-10) and phosphoinositide (PI) turnover (11-13). The discovery in excised patches of ciliary membrane of a conductance gated by cAMP (14) and the identification of an olfactory-specific G protein (G_{olf}) linked to adenvlate cvclase (6) have led to the development of a model in which activation of receptors by odor stimuli causes an increase in intraciliary cAMP that acts directly to open cation channels,

1166

causing membrane depolarization. Although this cAMP hypothesis integrates many experimental observations, it is not clear how reports (11, 12) indicating that odors trigger an increase in intraciliary IP₃ fit within this hypothesis. To address this question, we have examined the role of Ca^{2+} in signal transduction in the olfactory system of the catfish.

Catfish have olfactory receptors capable of recognizing 1-amino acids at concentrations as low as 10 nM (15). The electro-olfactogram (EOG), the integrated electrical response of the olfactory epithelium elicited by 1-amino acids, was abolished by removal of Ca^{2+} from the medium bathing the epithelium (Fig. 1). This effect cannot be caused by damage to the epithelial structure because it was readily reversible. In addition, some, but not all, Ca^{2+} channel blockers inhibited the EOG (Fig. 1). These data confirm earlier observations (16-18) that suggested that Ca²⁺ is a necessary cofactor for the olfactory (EOG) response and that Ca²⁺ channels are probably involved.

Because odors elicit rapid activation of PI turnover leading to accumulation of ciliary IP_3 (11, 12), one possible explanation for the inhibition of the EOG response by removal of Ca²⁺ or by addition of Ca²⁺ channel blockers is that an increase in intracellular Ca^{2+} concentration ([Ca^{2+}]_i), resulting from Ca²⁺ influx triggered by the increase in PI turnover, plays a mediatory role in olfactory transduction. If this hypothesis is viable, (i) an increase in Ca²⁺ influx must occur upon stimulation with odorants and (ii) a mechanism must exist to link the increase in PI turnover to an increase in Ca²⁺ influx. To establish whether the first criterion is fulfilled, we measured $[Ca^{2+}]_i$ in isolated olfactory neurons with the fluorescent Ca²⁺ indicator fura-2 (19). In the presence of 1 mM extracellular Ca^{2+} , $[Ca^{2+}]_i$ was low $(23 \pm 19 \text{ nM}, \text{ mean} \pm \text{SD}, n = 140)$ but increased rapidly to 0.8 to 1.5 μ M after addition of 10 μ M ionomycin, a Ca²⁺ ionophore (20). Five percent of the neurons (11 of a total of 219) responded to L-amino acids with a rapid increase in $[Ca^{2+}]_i$ (Fig. 2) (133 were stimulated with 100 μ M Lalanine, L-arginine, and L-glutamate and 86 were stimulated with the above amino acids plus L-norleucine). Both the basal $[Ca^{2+}]_i$ of

Fig. 1. (**A**) Effect of removal of apical Ca^{2+} or addition of Ca²⁺ channel blockers on EOG responses to 100 μ M L-norleucine [mean \pm SD; n = 3 for no Ca²⁺, verapamil, and amiloride; n = 2 for ryanodine and ruthenium red (ammoniated ruthenium oxychloride)]. Each response in the presence of a drug or EGTA was preceded by its own control. Responses were normalized by dividing by control. Responses for no Ca^{2+} , ryanodine, and ruthenium red were significantly different from control by a t test ($\tilde{P} < 0.05$). Similar results were found with 1-arginine as the stimulus. Catfish (150 to 250 g) were immobilized with Flaxedil (gallamine triethiodide; 0.1 mg per 100 g of body weight) and anesthetized with MS-222 in the respiratory water. Underwater EOGs (32) were recorded according to the method of Caprio (33). The epithelium was perfused with artificial pond water (0.2 mM CaCl2, 0.02 mM KCl, 0.3 mM NaCl, and 3 mM NaHCO₃, pH 8.3). We modified the artificial ond water by removing the CaCl₂ and adding 0.5 mM Na2EGTA, pH 8.3.

SCIENCE, VOL. 249

Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA, 19104.

^{*}To whom correspondence should be addressed.