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was caused by a stn~cnual mutation or 
differences in gene expression, parallel 
Northern (12) and immunoblot (21) analy- 
ses were done on age-matched normotensive 
DS and DR rat kidney RNA and membrane 

preparations (Fig. 3). Equal size and 
amounts of a1 mRNA and protein were 
detected in DS and DR rats, indicating that 
the differences in Na' pump activity could 
not be accounted fbr by a e r e n c e  in the 
levels of gene expression of S and R all&, 
and that there was no observable size &r- 
ence between mRNAs or polypeptides en- ' 

coding the two alleles. 
A DS kidney cDNA libraty was then 

made and screened (22) with the previously 
cloned a1 and p1 cDNAs as hybridization 
probes (12). Full-length cDNA clones for 
the S alleles of these isofbnns (S-a1 and S- 
p1) were isolated and characterized. S-p1 
revealed a nudeotide sequence within the 
amino acid coding region identical with the 
previously published (8) p cDNA sequence 
(1 4). The amino acid coding region of the S- 
a1 cDNA showed three nudeotide substitu- 
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15 20 
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Fig. 2 &Rb+ in5ux assays of S- and R-spca6c a 1  
sodium pumps in Xmopuc oocytes microinjected 
with kidney poly(A)+ RNA (21). (A) Northern 
analysis of kidney poly(A)+ RNA from DS (S) 
and DR (R) rats. ?hc nondcgraded quality of a l -  
speaiic mRNAs (arrowhead) was ascached by 
Northcm analysis (12); amounts wcrc quantitated 
by densitomeay and adjustcd accordmgly for 
microinjection of equal S- and R-al mRNA into 
oocytcs. The 28s and 18s ribosomal markers are 
noted on the right. (B) A rcpmcntative Xmopuc 
oocyn expression experiment showing the re- 
spective linear plots of ouabain-sensitive =Rb+ 
uptake of oocytes microinjected with DR rat 
kidney poly(A)+ RNA (RR). (@); oocytcs mi- 
croinjcctcd with DS rat kidney poly(A)+ RNA 
(SS) (0); and control oocytes microinjected with 
water (W). Age-matched 9- to 10-week-old male 
DS and DR rats were used fbr all qxrimcnts; 
DS blood pressure was 106 + 8 mmHg; DR, 
100 2 8 mmHg. 
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tions [T1079 for A1079; C1680 for T1680; T2922 

for C2922 of the published ctl cDNA se­
quence (6, 7)] but only one (nt 1079) 
resulted in an amino acid substitution. The 
T1079 for A1079 transversion (6, 7) (Fig. 4A) 
was observed with two different sequencing 
systems (23). The resulting amino acid sub­
stitution in S-cd Na+,K+-ATPase, Leu276 

instead of Gin276 (Fig. 4B), is located 12 
amino acids downstream from a well-charac­
terized tryptic site in the Na+,K+-ATPase a 
subunit polypeptide, T3(Na). As T3(Na) is 
exposed only in the presence of Na+, and 
not in the presence of K+, it marks a domain 
deduced to be involved in one or more 
conformational changes in the a subunit 
necessary for ion transport (24, 25). This 
single amino acid substitution changes the 
hydropathy profile of the flanking peptide 
segment (Fig. 4C) from a hydropmlic to a 
hydrophobic segment as analyzed according 
to the Kyte-Doolitde scale with a window of 
seven amino acids (26). 

To demonstrate unequivocally that the 
Leu276 for Gin276 substitution accounts for 
the decreased K+ influx, equal amounts of 
in vitro transcribed RNAs from S- and R-
al cDNAs [confirmed to have the same 
sequence as the published al cDNA (6, 14)] 
were then microinjected, respectively, into 
oocytes in a 1:1 molar ratio with the in vitro 
transcribed pi RNA and assayed for Rb+ 

influx (27). Consistent with the data from 
oocytes microinjected with S and R kidney 
poly(A)+ RNA (Fig. 2), the S-specific al 
Na+ pumps had significantly less 86Rb+ 

influx as compared to R-specific al Na+ 

pumps (Table 1). Analysis of al-specific 
immunoprecipitable products of oocyte mem­
branes (27) revealed equivalent amounts of a 
subunit polypeptide in oocytes microinjected 
with S- or R-al RNA oocytes, both being 
more than that detected in control oocytes 
injected with water (Fig. 5). 

These observations suggest that the 
Leu276 substitution of Gin276 affects K+ 

97.4-

66-

Fig. 5. Immunoprecipitarion of rat a l Na+ 

pumps expressed in Xenopus oocytes. Autoradio-
gram of size-fractionated immunoprecipitated a l 
subunit protein from oocyte membranes (arrow­
head) isolated from [35S]methionine-labeled oo­
cytes microinjected with water as control (C), or 
with S-al in vitro-transcribed RNA (S), or R-a l 
in vitro-transcribed R N A Immunoprecipitation 
was done with al-specific monoclonal antibody, 
MCK-1 (27). Cross-reactivity with endogenous 
Xenopus laevis oocyte Na+ pumps is noted. Molec­
ular mass markers are noted on the left. 

influx of the Na+,K+-ATPase, thus marking 
a domain on Na+,K+-ATPase important for 
K+ influx. Its location in a region that has 
been implicated in conformational change 
during Na+,K+-ATPase ion transport, as 
deduced from the presence of a sodium-
bound conformation-specific tryptic site (3, 
24, 25), is consistent with the hypothesis 
that the change in hydropathy profile of this 
region might alter the conformational 
change or changes necessary for normal 
Na+/K+ ion transport, and hence account 
for the observed decreased K+ influx. Fur­
thermore, Na+,K+-ATPase a3 isoform also 
has an amino acid substitution at this exact 
position as compared to al and a2 (6): a 
charged Lys residue instead of Gin. The ion 
transport properties of a3 in comparison to 
al remain to be elucidated. 

Further studies will be necessary to eluci­
date whether this mutation, Gin —» Leu276, 
is involved in the mechanism of Na+ trans­
port by the Na+ pump, as well as provide 
insight into ion transport mechanisms. Our 
hypothesis is that the S-al Na+,K+-ATPase 
is involved in the pathogenesis of hyperten­
sion or its sequelae as this mutation was 
found in a genetic salt-sensitive hypertensive 

Table 1. Ouabain-sensirive ^Rb"1" influx of S- and R-specific a l sodium pumps in microinjected 
Xenopus oocytes. Comparison of ouabain-sensitive ^Rb"1" uptake of S- and R-specific a l sodium pumps 
expressed from kidney pory(A)+ RNAs (16). Comparison of ouabain-sensitive ^ R b * uptake of S- and 
R-specific a l sodium pumps expressed from in vitro transcribed RNAs (26). Columns: n, number of 
oocytes; average ouabain-sensitive 8 6 Rb + uptake by exogenous sodium pumps plus or minus standard 
error; CV, coefficient of variation; </, average difference of the means plus or minus standard error. The 
percent of total 8 6 Rb + uptake comprised by exogenous ouabain-sensitive 8 6Rb+ uptake was an average 
of 19.45 ± 2.4% for SS and 42.9 ± 4.7% for RR. 

Alleles 
% R b + uptake 
(fmol/oocyte) CV(%) 

SS 
RR 

SS 
RR 

17 
17 

6 
7 

Kidney poly(A)+ RNAs* 
900.8 ± 28.3 12.9 

3201.5 ± 265.1 34.0 
In vitro transcribed RNAf 

769.3 ± 87.4 27.8 
1174.9 ± 71 16.2 

2300.7 ± 245.3 

•Paired-sample t test: P (t > 8.02) < 0.001. tTwo-sampk t test: P (t > 3.61585) < 0.005. 
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strain. An alteration in Na+,K+-ATPase ion 
transport would affect the Na+/K+ electro­
chemical gradient and conceivably contrib­
ute to changes in renal function, vessel wall 
resistance, or cardiac rhythmogenicity and 
contractility as described in hypertension. 
Genetic linkage studies and transgenic ani­
mal experiments will be necessary to critical­
ly evaluate this hypothesis. 
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Sexual Role Reversal in Mate-Finding Strategies of 
the Cabbage Looper Moth 

The mate-finding behavior of the cabbage looper moth Trichoplusia ni (Lepidoptera: 
Noctuidae) includes both female- and male-produced sex pheromones used in distinct 
mate-finding strategies. Both sexes release multicomponent pheromones attractive to 
the opposite sex. Male pheromone is comprised of d-linalool, rn-cresol, and p-cresol 
released from abdominal hair pencils. Males exposed to host plant odor or to the 
female sex pheromone (Z)-7-dodecen-1-01 acetate are more attractive to females, 
suggesting stimulation of male pheromone release. 

T HE MATE-FINDING BEHAVIOR OF the cabbage looper moth Tvichoplusia 
ni (Hiibner) has been depicted as a 

system typical of other insects, particularly 
other moths. The stationary calling female 
produces a potent species-specific male at- 
tractant (1-3), and males release possible 
aphrodisiac pheromones during courtship 
interactions (2, 4). This pheromone comrnu- 
nication system was one of the first studied 
and has served as a model for research on 
insect sex pheromones. However, we dis- 
covered an alternate mate-finding strategy in 
this species that involves attraction of fe- 
males to males (5) .  Observations of cabbage 
loopers in field cages confirmed that male 
attraction to females and female attraction to 
males constitute separate mate-finding strat- 
egies. Female visitation at cages of males 
occurred principally at dusk, whereas male 
visitation at cages of females occurred in the 
fourth to ninth hours of the 10-hour night 
(6). 

We report here the identification of a 
male cabbage looper pheromone isolated 
from hair pencils that is attractive to females. 
We show that males release this pheromone 
in response to female pheromone and that 
males in an airstream of host odor or female 
pheromone are more attractive to females. 
Such behavior, as well as male attraction to 
host plants and scent-marking on host 
plants, suggests a resource-based mating 
strategy, with host plants as natural sexual 
rendezvous sites. We have identified a long- 
range sex attractant from a male moth and 
documented host plant kairomonal enhance- 
ment of male attractiveness in Lepidoptera. 

Because we previously isolated material 
attractive to females from male cabbage 
looper hair pencils (S),  hexane extracts of 
male cabbage looper hair pencils were frac- 
tionated with capillary gas chromatography 
(GC). Flight tunnel bioassays of GC frac- 
tions showed that maximum attraction of 
unmated females required the combination , , 

of three fractions. Attraction response rates 
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ly (n = 45), with attraction to combined 
fractions significantly higher (Duncan's new 
multiple range test, P I 0.05, after arcsine 
transformation of the data). Spectroscopic 
analyses of compounds in these fractions 
resulted in the identification of the active 
components as d-linalool, m-cresol, and p- 
cresol (7). Bioassay results confirmed that all 
three compounds were required to entice 
the cabbage looper moths to fly upwind for 
contact with the pheromone dispenser. 
Thirty-seven percent of 35 moths were at- 
tracted to contact the dispenser baited with 
all three compounds, compared to none for 
cresols, 9% for d-linalool, and 34% for hair 
pencil extract. The configuration of d-linalo- 
01 was established via chiral derivitization 
techniques (7). 

Initial attempts to collect pheromone re- 
leased by males were unsuccessful. We hy- 
pothesized that males may be stimulated to 
release pheromone by host plant chemicals, 
by female pheromone, or by both. In a 
previous study of cabbage looper moth at- 
traction to cabbage plants [Brassica oleraceae 
(L.)] (8), males arriving at plants called and 
scent-marked. Also, male cabbage loopers 
exhibit full hair pencil displays upon ap- 
proaching calling females (9, lo), possibly 
releasing the same pheromone blend we 
isolated from these hair pencils. Experi- 
ments were conducted to determine if male 
pheromone release is stimulated by host 
plant odor or by female pheromone and if 
the pheromone released is the attractant we 
isolated from extracts of hair pencils. 

In flight tunnel experiments, noncompeti- 
tive comparisons were made of unmated 
female T. ni responses (upwind-oriented 
flight and contact) to males, potted cabbage 


