
Principles of Design of Fluid Transport 
Systems in Zoology 

Fluid transport systems mediate the transfer of materials 
both within an organism and between an organism and its 
environment. The architecture of fluid transport systems 
is determined by the small distances over which transfer 
processes are effective and by hydrodynamic and energetic 
constraints. All fluid transport systems within organisms 
exhibit one of two geometries, a simple tube interrupted 
by a planar transfer region or a branched network of 
vessels linking widely distributed transfer regions; each is 
determined by different morphogenetic processes. By 
exploiting the signal inherent in local shear stress on the 
vessel walls, animals have repeatedly evolved a complex 
branching hierarchy of vessels approximating a globally 
optimal system that minimizes the costs of the construc- 
tion and maintenance of the fluid transport system. 

T HE DIVERSITY OF FORMS IN THE BIOLOGICAL WORLD IS dazzling, but there are limits to what may be molded by the 
evolutionary process. Some of these limitations [intrinsic 

constraints ( I ) ]  are inherent to biological systems: the limits to the 
maximum forces animals can produce (arising from the maximum 
stress that an actin-myosin-based force-producing organ can gener- 
ate) or developmental constraints (2, 3) which limit the diversity of 
forms that evolution can produce from a given taxon. Extrinsic 
constraints (1) originate from the physical and mathematical struc- 
ture of the universe in which organisms evolve (4). Examples range 
from the dependence of the strength of materials on the characteris- 
tics of molecular bonds to the manifold effects a change in size can 
exert on the biology of an organism (j), some arising from strictly 
geometrical considerations and others arising from changes in the 
relative magnitudes of physical forces such as surface tension, 
gravity, and viscosity (6). 

To maintain their functional integrity, organisms must continual- 
ly exchange materials with their environments and move materials 
within themselves. Such movement is almost invariably mediated by 
the convection of a fluid. In this article, I discuss the broad 
limitations that physical laws place on the structure of the systems 
which transport these fluids within organisms; external flows are a 
separate and much more complex topic. The advantage of approach- 
ing this subject from a physical perspective is that it allows one to 
perceive and understand common elements (that is, "design princi- 
ples") in the structure of organisn~s. The architecture of these 
systems is not strongly influenced by the hnctional role that the 
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fluld plays In the biologv of the organism or by the nature of the 
circulation (that is, whether the fluid passes through the system only 
once or 1s continually recirculated). 

Transport Systems in Biology 
Organisms transport fluids for nvo analogous but hstinct rea- 

sons. The most common form of fluid transport system, an ex- 
change system, is found in the vast majority of multicellular plants 
and animals; this system sidesteps the severe constraints that macro- 
scopic distances place on the utility of diffusion. Such systems 
include classical circulatory systems, the unidirectional and tidal 
convective systems that move fluids to the respiratory strucrures of 
metazoans, xylem elements in tracheophytes, and the body cavities 
of a variety of coelomate and pseudocoelomate animals. 

The second filnctional class of fluid transport system, a trophic 
system, is restricted to suspension-feeding animals, organisms that 
obtain nutrients by capturing organic particles that are in suspension 
in a fluid. Trophic fluid transport systems are rare only in compari- 
son to the near universality of exchange fluid transport systems. For 
example, sponges, clams, brachiopods, a broad diversity of arthro- 
pods, ascidians, many fishes, and baleen whales all transport fluids 
through parts of their body, extracting suspended nutrients to 
support their metabolism and growth. 

Why Must the Fluid Flow? 
The most basic transport process in biology is diffusion, the net 

movement of molecules from regions of high concentration into 
regions of low concentration resulting from thermally driven ran- 
dom motion (7).  On  a cellular level, all transport processes ultimate- 
ly involve diffusion. On small spatial scales, diffusion is rapid, 
reliable, and cheap. If a cell or  organism merely binds or chemically 
transforms a molecule available in its environment, more molecules 
will be delivered by random thermal motion. The relevant aspects of 
diffusion are given by Fick's first law: 

where dSldt  is the rate of transport, A is the area through which 
dihsion occurs, d c l d x  is d ~ e  concentration gradient, and D is the 
difision coefficient of the substance. 

The direct dependence of &fusion rates on the area through 
which d ihs ion  occurs and the inverse dependence of these rates on 
distance imply that organisnls (or parts of organisms) that depend 
on diffi~sion for exchange must be small or flat (to minimize the 
difision distance) and should have high surface-to-volume ratios 
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(to maximize the ratio of the area available for diffusion to the 
demand for materials). Small organisms or parts of organisms are 
thus well suited to use diffusion as a transport mechanism. However, 
with an increase in either organismal size or spatial scale, the 
situation becomes less favorable. Exchange transport systems have 
evolved to circumvent this problem. 

The same problem arises for suspension feeding animals. The 
imperative for the maintenance of a flow of fluid past a suspension 
feeder's filtering structure is obvious: the vast majority of the 
biomass suspended in the oceans lies in the lower portion of the size 
spectrum of particles ( 8 ) ,  and such particles have only limited 
motility. Many suspension feeders actively pump fluids past their 
filtering structures; in most of these animals, the vulnerable filters 
are hidden in their bodies, and fluids are moved to and away from 
the filters in trophic fluid transport systems. Particle capture in 
suspension feeders almost invariably involves direct contact between 
the particle and an element in the animal's filter; capture distances 
are on the order of the particle radius, 10' to lo2 p,m (9). 

Despite the obvious differences in the central biological processes, 
the common constraint that links exchange and trophic fluid 
transport systems is the small physical distance over which the 
significant biological phenomenon is effective. 

Principle 1: When a biologically relevant physical transfer process 
is limited to small spatial scales and local depletion of a necessary 
resource is threatened, bulk flow of a fluid will be utilized for long- 
distance transport of that resource. 

The Architecture of Fluid Transport Systems 
What characteristics should such fluid transport systems have? 

First, to avoid local exhaustion of the resource, the fluid must 
circulate (maintain dC/dx or supply particles). The pattern of 
circulation is not tightly constrained; although all recirculating 
transport systems are exchange systems and all trophic transport 
systems are through-flow systems, the converses of these statements 
are not true and no other simple generalities hold. 

Second, distances must be minimized in the exchange sites (to 
keep the concentration gradients high or to allow particle capture). 

Table 1. Systemic circulation of a 13-kg dog. Radii and lengths are average 
values; the area given is the aggregate cross-sectional area of the vessels. Note 
the increase in cross-sectional area and decrease in velocity in the transfer 
region (the capillaries). The capillaries are both small in radius and thin- 
walled; although the capillaries represent only about 0.07% of the length of 
the circuit, the blood spends about 4% of the circulation time there. A 
number of categories have been omitted here from the original tabulation 
(90); therefore, circulation times do not add to 100% (91). 

Veloc- Total 

Vessel Radius Number Length Area ity circu- 
(cm) (cm) (cm2) (cm lation 

s-') time (%) 

Aorta 
Large ar- 

teries 
Terminal 

arteries 
Arterioles 
Capillaries 
Venules 
Terminal 

veins 
Main veins 
Large veins 
Vena cava 

31 AUGUST 1990 

Table 2. Circulatory system of Homo sapiens (92). Numbers of vessels were 
calculated from average radii and aggregate areas given. Note the same 
features as in Table 1. 

Radus Wall 
Vessel Number 

(cm) 
Area thickness (cm2) 

(cm) 

Aorta 1.25 1 4.5 0.2 
Arteries 0.2 159 20 0.1 
Arterioles 1.5 x 5.7 x lo7 400 2 x lo-3 
Capillaries 3 x 1.6 x 10'' 4500 1 x lo-4 
Venules 1 x lo-3 1.3 x lo9 4000 2 x lo-4 
Veins 0.25 200 40 0.05 
Vena cava 1.5 1 18 0.15 

This requirement implies that the vessels carrying the fluid should be 
small (10). However, Poiseuille's law ( 6 )  implies that any such 
arrangement incurs a very high cost. For steady flow in a circular 

pipe 

Q = ndl'r4/8~p, 

where Q is the volumetric flow rate, dP/L is the pressure drop per 
unit length of pipe, p, is the dynamic viscosity of the fluid, and v is 
the pipe radius. This equation is strictly applicable only in fully 
developed laminar flow [that is, Reynolds number (Re) (11) 
< 22000 and ten diameters downstream of an entrance or branch], 
but it will serve as a useful guide. The implied restriction is severe. 
For constant Q, resistance to flow is proportional to Y - ~ ;  for a 
constant flow velocity, resistance is proportional to r-'. In both 
cases, cost is directly proportional to the length of pipe. 

Pvinciple 2: Energetic considerations dictate that fluid transport 
systems utilize both large and small vessels; small vessels occur at 
exchange sites and are short, whereas all long-distance transport 
occurs in large vessels. 

Although this might seem a straightforward criterion to imple- 
ment, difficulties arise. Recall that diffusion occurs by the random 
motion of molecules; it takes a finite time to achieve equilibrium or 
any fraction thereof. To maximize the efficacy of the system, the 
fluid should spend a significant fraction of the circulation time at the 
exchange sites. Implementation of principle 2 in its simplest form, 
narrowing a large vessel down to a short, small vessel at the 
exchange site, would produce exactly the opposite result. Because 
the volume of fluid that enters the large vessel must also exit the 
small one, the lower cross-sectional area in the small vessel implies 
that the fluid must increase its speed. The fluid then spends the least 
time in the small vessel, because of both the increase in flow speed 
and the short length of the small vessel. Again, the solution is 
straightforward. 

Pvinciple 3: In fluid transport systems, the total cross-sectional area 
of the small vessels greatly exceeds that of the large vessels, so flow 
velocities in the small vessels are lower than those in the large vessels. 

The exchange fluid transport systems in both plants and animals 
meet these three criteria. All systems consist of at least two distinct 
size classes of vessels. Exchange occurs in small vessels, which are 
both short and numerous. The aggregate cross-sectional area of the 
small vessels is always much greater than that of the large vessels; as a 
consequence, flow velocities are lowest in the smallest vessels. 
Representative data for mammals are given in Tables 1 and 2; see 
also (12). 

The same constraints apply to trophic fluid transport systems 
(Table 3), albeit for slightly different reasons. Of the six particle 
capture mechanisms used by suspension feeders (9 ) ,  one (inertial 
impaction) shows an increasing efficiency with increasing fluid 
velocity, but this mechanism has such a low efficiency for the low- 
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density organic particles and low Re typical of particle capture in 
suspension feeders that it is of minimal importance. Four of the 
particle capture mechanisms (13) become less efficient at higher 
velocities. All five of these capture mechanisms depend on adhesive 
interactions between the particle and filter; higher velocities increase 
the probability of particle loss. The efficiency of the remaining 
mechanism, sieving, is not directly dependent on fluid velocity, but 
sieving is rarely used by animals (9). There is a mild premium on 
higher velocities in the incurrent section of a trophic fluid transport 
system (before the filter) to prevent particle sedimentation on the 
walls, and a strong premium on high velocities in the excurrent 
section to ensure that the momentum of the water is high enough 
when it leaves the system to minimize the probability of refiltration. 
The trophic fluid transport systems of active suspension feeders fit 
the paradigm (Table 4); the total cross-sectional area of the filter 
greatly exceeds the cross-sectional area of the inflow and outflow 
pipes. For both trophic and exchange fluid transport systems, lower 
velocities in the transfer regions imply lower costs in moving the 
fluid. 

The Geometries of Transfer Regions 
Further analysis of the architecture of fluid transport systems 

depends on distinguishing between the two hndamentally different 
transfer-region geometries that occur in these systems. Planar 
transfer regions (Fig. l), where the exchange sites are restricted to a 
single plane, occur in a wide variety of fluid transport systems. For 
example, particle capture in the trophic fluid transport systems of 
bivalved mollusks, brachiopods, and cephalochordates occurs on the 
ctenidia, lophophores, and gills, respectively; in all three, the 
transfer region is topologically a flat sheet. Respiratory exchange in 
the exchange transport systems of teleost fishes, cephalopod and 
gastropod mollusks, and brachyuran crabs occurs in the gills 
(termed ctenidia in the mollusks); in these cases also, the topology is 
that of a flat sheet. 

Extensive folding of the transfer region often partially masks the 
fundamentally planar morphology. Folding increases the cross- 
sectional area through which the flow passes and thus decreases the 
average velocity of the fluid at the exchange sites. For any given size 
of vessel in the transfer region, this velocity reduction implies a 
lower cost in moving the fluid. This increase in cross-sectional area 
in the transfer region occurs both in systems with a low-velocity 
ciliary pump (bivalves, brachiopods, ascidians, cephalochordates, 
and gastropods) and in systems with a high-velocity muscular pump 
remote from the transfer region (fishes and cephalopods). 

Typically, the planar transfer region partitions the fluid transport 
system into two sections, usually termed incurrent and excurrent, 
distinguished by whether the fluid has passed the exchange sites. 
The pipes in such a system rarely branch; the usual morphology 
consists of a small number (typically one) of incurrent openings and 
a small number (typically one or two) of large vessels leading to the 
excurrent opening or openings. All fluid transport systems with 
planar transfer regions have some feature that decreases the proba- 
bility of recycling excurrent water [for example, down-current 
release of the excurrent stream in fishes and some ascidians (14); 
constriction of the excurrent opening to accelerate the fluid in 
bivalves, brachiopods, and cephalopods]. Although all fluid trans- 
port systems with planar transfer regions are through-flow systems, 
not all through-flow systems have planar transfer regions [for 
example, the fluid transport systems in sponges (trophic), bird lungs 
(exchange), and terrestrial plants (exchange) are all through-flow 
systems with nonplanar transfer regions]. 

In the second major geometry of transfer regions, distributed 

transfer regions (Fig. 2), the exchange sites are distributed in three- 
dimensional space, typically throughout the body of the organism. 
The most familiar examples are the circulatory systems of animals. In 
terrestrial plants, the exchange sites are the spongy mesophyll cells 
distributed through the body of the leaves, themselves distributed in 
three-dimensional space around the plant. A distributed geometry is 
rarer in trophic than in exchange fluid transport systems but does 
occur-the choanocytes, which act as both pump and filter in 
sponges, are found in choanocyte chambers scattered throughout 

Table 3. Aggregate cross-sectional areas and water velocities in the trophic 
fluid transport system of a 100-pl segment of the sponge Haliclona pevmollis 
[abridged from (93)l. The collar slits of the choanocytes (the site of particle 
capture) are the transfer region; because the cross-sectional area is extremely 
high, the velocity is very low. The reduced cross-sectional area of the 
osculum accelerates the excurrent jet and helps reduce refiltration. 

Site Area 
(mm2) 

Ostia 
Inhalant canal apertures 
Prosodi 
Prosopyles 
Choanocytes 

Collar bases 
Collar slits 
Collar apertures 

Apopyles 
Exhalant canal apertures 
Osculum 

Table 4. Cross-sectional areas and velocities in the trophic fluid transport 
systems of a variety of suspension-feeding marine invertebrates. "Incurrent" 
and "excurrent" are those regions of the fluid transport system upstream and 
downstream of the transfer region, respectively. For the mollusks and 
chordate, these regions are the incurrent and excurrent siphons; for the 
brachiopods, they are the lateral incurrent and median excurrent gapes. Note 
the increase in area and decrease in velocity in the transfer regions; in general, 
the fluid leaves the systems with a high velocity. For the mollusks, the area 
given for the transfer region is the total area of ostia in the ctenidium. For the 
brachiopods, velocities at the lophophore (the transfer region) were calculat- 
ed from (84) on the assumption that stagger of the lophophore filaments 
yields an area open to the flow equivalent to the projected area of the 
lophophore. 

Cross-sectional area (cm2) Average veloclty (cm s-') 

Spec'eS I ~ ~ ~ ~ -  Excur Incur- Trans- fer Excur- 
rent rent rent rent reglon reglon 

Mytilus 
edulis* 

Crassostvea 
gigas t 

Terebvatalia 
tvattsvevsa 

Laqireus 
califontianus 

Bvachiopoda 
0.970 11.340 0.293 0.31 0.027 1.03 

Chordata 
0.503 25.3 0.196 1.51 0.03 3.87 

*Data from (85) for an "average" animal 3.5 cm long pumping 1 cm3 s-I. The velocity 
in the mantle cavity given in (85) is obviously in error; it assumes that the cross-sectional 
area in the mantle cavity perpendicular to the flow is equal to the area of the ctenidia 
[see (86)k tData from (87) for a 15-cm-long animal. A volumetric flow rate of 
177.7 cm s-' was calculated, based on regressions in (88). The highest velocities occur 
in the incurrent siphon, contrary t o  the pattern generally seen in bivalves. $Data 
from (89) for a 0.412-g animal (dry weight). The transfer region is the mucus sheet 
overlying the gill bars in the pharynx. 
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the sponge. Because the transfer regions in systems with this 
geometry are widely dispersed, the fluid transport systems them- 
selves must have a more complex geometry than in systems with 
planar transfer regions; in particular, they tend to have a hierarchy of 
sizes of vessels, each of which is joined to the whole at branch points 
in the system. What rules govern the architecture of this branching 
hierarchy? Assuming that (i) it costs energy to move the fluid; (ii) 
laminar, fully developed Poiseuille flow of a Newtonian fluid occurs 
throughout the system (Fig. 3A); (iii) there is some cost to building 
or maintaining the system (the vessels) and its contents (the fluid); 
and (iv) there is some function that maximizes return on the system 
for the costs of construction, maintenance, and operation, Murray 
(15-17) derived the following relation: 

Principle 4 (Murray's Law): In an optimally designed system 
involving bulk laminar flow of a Newtonian fluid through pipes, at 
any branch point the radius of the parent vessel (yo) cubed will equal 
the sum of the cubes of the radii of the daughter vessels (rl, v2, 
Y3,. . . v,): 

Murray's original derivation minimized the costs of forcing the 
fluid (blood) through the pipes (blood vessels) against the action of 
the fluid's viscosity and the costs of building and maintaining the 
system (blood and blood vessels). However, the latter cost may be 
replaced by any cost associated with the volume of the system as a 
whole (18). This relation holds only for laminar flow; for turbulent 
flow regimes, the exponent would be 2.33 rather than 3 (18-20). 

Tests of Murray's Law 
There has been some controversy over the validity of Murray's law 

(18, 20, 21), but it appears robust when appropriate tests are 
applied. Hutchins et a/. (22) measured vessel diameters at 42 branch 
points in normal human left main coronary arteries; the mean 
exponent relating parent and daughter vessel radii was 3.2 (20.25). 

Fig. 1. Flu~d transport 
systems wlth a planar ge 
ometry of the transfer re 
glons Dlrectlon of flow 
is indicated by arrows. 
The incurrent (IN) and 
excurrent (EX) parts of 
the systems are labeled; 
the transfer regions are 
indicated in solid black. 
(A) Schematic horiwn- 
tal section through a B 
generalized teleost fish, 
showing an exchange 
fluid transport system. 
Flow is driven by mus- 
cular action of the buccal 
floor and opercula; the 
transfer regions are the 
gills. (B) Schematic 
cross section through a 
generalized eulamelli- 
branch bivalve mollusk. 
Although the transfer re- 
gions (the ctenidia) are 
involved in respiration, 
their primary function is 
particle capture; hence, 
this is a trophic fluid 
transport system. Water 

the plane of the drawing. 
flow in both the incurrent and excurrent regions is primarily perpendicular to 

Fig. 2. A fluid transport 
system with dstributed 
transfer regions (black), 
illustrating the branch- 
ing hierarchy of the ves- 
sels. This highly schema- 
tized drawing of the 
trophic fluid transport 
system of a sponge 
shows the incurrent ca- 
nals (dashed lines) and 
excurrent canals (solid 
lines) that carry water 
toward and away from, 
respectively, the choano- 
cyte chambers. Flow di- 
rections are indicated by arrows. 

Vessels from pathologic hearts yielded smaller values for the expo- 
nent, as did a heterogeneous grouping of other coronary arteries; 
none of these values were significantly different from a value of 3 
(23). Zamir et al. (24) compared the dimensions of vessels at -500 
branch points in rat arterial systems to those predicted by Murray's 
law; agreement with theory appears to be good, but statistical 
measures were not given. 

In a variation on this approach, LaBarbera and Boyajian (25) 
measured vessels (diameters from 89 to 502 pm) in the astrorhizal 
system of three species of Devonian stromatoporoids (an extinct 
group of sponges). The astrorhizae are usually interpreted as a 
network of excurrent canals (26). For each triplet of vessels at a 
dichotomous branch point, an expected parent vessel diameter was 
calculated from the daughter vessels' diameters, on the assumption 
that Murray's law was valid. Mean differences between observed and 
calculated parent vessel diameters for 361 branch points in five 
distinct astrorhizal complexes ranged from 0.6 to 5.8 pm (none 
significantly different from zero). 

Murray's law implies that, at any level in the hierarchy of vessels, 
the sum of the cubed radii should yield a constant value (16, 18). 
The data presented here for mammalian circulatory systems (Table 
5) and the fluid transport systems of four species of sponges (Tables 
6 through 8) utilize this relation. Except for the choanocyte 
chambers and apopyles (discussed below), the vessels in sponges 
meet this rule within a factor of 3, excellent agreement considering 
that the values for vessel diameters and numbers are estimates from 
small samples of tissue. The data for mammalian circulatory systems 
fit the model less well; arterial and venous vessels yield different 
values, whereas values for the arterioles and capillaries differ marked- 
ly from those of both arterial and venous vessels. 

This mode of analysis has a weakness, however. Any grouping of 
vessels, be it anatomical (the human and dog data in Table 5), 
functional (the sponge data in Tables 6 through 8), or obtained 
following various vessel ranking methods (27-31) (the hamster 
muscle in Table 5), necessarily groups vessels of different sizes into 
the same category. Calculation of a mean value for radius weights all 
vessels equally; the sum of the number of vessels times the mean 
radius cubed will equal the sum of the individual cubed radii only if 
the number of vessels is inversely proportional to the radius cubed. 
Precisely these arbitrary categorizations have been used in most 
studies on the architecture of the bronchial and circulatory systems 
(32-38). 

A more direct test utilizes a relation implicit in Murray's law (18): 

where v is the radius of the vessel and k is a constant. Mayrovitz and 
Roy (39) measured flow rates and radii in 160 vessels in the rat 
arteriolar circulation; vessel radii ranged from 3 to 54 pm. The 
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exponent of v that they derived was 3.01 (95% confidence inter- 
val = 2.86 to 3.14). This result was robust to the genotype of the 
rats and the vascular state; the mean exponent o f  sGLdifferent 
treatments was 2.997 (+0.026). Kobari et a l .  (40), in a similar study 
of the flow in plial arteries (radius 10 to 100 pm) in cats, obtained 
an exponent of 2.98 (41). 

The most common approach (20,21, 42,43) to testing the validity 
of Murray's law (and alternative optimization models) utilizes the 
dependence of branching angle at a branch point on the relative size 
of the daughter vessels. A number of alternative formulations of the 
relation are possible; all predict that daughter vessels with smaller 
radii should make steeper angles to the parent vessel. Analysis of 
branching angles has, in general, shown poor agreement with 
theoretical predictions. Zamir et al.  (24) measured both diameters 
and angles of branches at 500 branch points in rat arterial systems; 
measured angles match theoretical predictions much less well than 
do diameter measurements from the same branch points. The angles 
predicted for different ratios of parent to daughter vessel diameters 
by different exponents are, in general, not greatly different (43); 
thus, this approach has not proved very useful. Zamir (44) con- 
toured cost functions for angles of branching, using minimum 
power (minimum total drag) and combined minimum power and 

Table 5. Exchange fluid transport systems in three mammals. For all three 
species, the H? (which should be constant by Murray's law) has been 
calculated. For H o m o  sapietrs, values for C? (proportional to the area available 
for difision or inversely proportional to flow velocity) and Xv4 (inversely 
proportional to resistance) are given for comparison. In general, H? yields 
relatively constatlt (but different) values for the arterial and venous systems, 
but values depart widely from those of both the arterial and venous systems 
in the smaller vessels (arterioles and capillaries). See text for explatlation. For 
H o m o  and Canis ,  vessel radii are in centimeters; the H? values have been 
divided by 0.1 cm3. For the hamster muscle, vessel radii are in micrometers; 
C? values have been divided by 1000 pm3. 

Vessel Average 
radus Number X? C? Xr4 

H o m o  sapiens* 
Aorta 1.25 1 1.56 1.95 2.44 
Arteries 0.2 159 6.36 1.27 0.25 
Arterioles 3 x 1.4 x 10' 127.4 0.382 1.15 x lo-' 
Capillaries 6 x 3.9 x lo9 1432 0.860 5.16 x 
Venules 2 x lo-' 3.2 x lo8 1273 2.55 5.09 x 
Veins 0.25 200 12.9 3.18 0.80 
Vena cava 1.5 1 2.25 3.38 5.06 

Cani s  j imil iavis t  
Aorta 0.5 1 1.25 
Large arteries 0.15 40 1.35 
Main arterial 0.05 600 0.75 

branches 
Terminal branches 0.03 1800 0.486 
Arterioles 1 x lo-3 4 x lo7 0.400 
Capillaries 4 x lo-4 1.2 x lo9 0.768 
Venules 1.5 x lo-' 8 x 10' 2.70 
Terminal veins 7.5 x lo-' 1800 7.59 
Main venous 0.12 600 10.37 

branches 
Large veins 0.30 40 10.80 
Vena cava 0.625 1 1.53 

Hamster  cheek pouch vetvactov muscle avteriolar network$ 
Vessel order 

0 1.8 476 2.78 
1 2.85 144 3.33 
2 4.2 4 1 3.03 
3 7.6 12 5.27 
4 13.65 2 5.09 

*Data from (92); numbers of vessels calculated from aggregate areas and radii 
given. ?Data from (90, 94); both attribute the basic data to Mall (32). $Data 
from (37). Vessel order was determined using Strahler ordering; centrifugal ordering 
produced no clear hierarchy of vessel sizes. 

volume (Murray's law) models. Using data from a variety of 
mammalian arterial systems, Zamir found that, in all cases, Murray's 
law fit the observed angles better than did any alternative formula- 
tions. More importantly, in virtually all cases the overwhelming 
majority of the data points fell within the limits of a 5% cost above 
the optimum (45). 

Although the available data are not definitive, it would appear 
that Murray's law is a useful approximation to the branching 
hierarchy of fluid transport systems with distributed transfer re- 
gions. This agreement is not an accident of geometry. The tracheal 
system in insects is superficially similar in architecture to the fluid 
transport systems discussed above, but bulk flow of air is either 
absent or limited to the largest vessels; 0' is delivered to the tissues 
of the insect by difision. The vessels of insect tracheal systems 
follow the Z v 2  law expected for a diffusion-based system (46, 47) 
rather than the Z v 3  of Murray's law. Murray's law better describes 
the fluid transport system of sponges than the circulatory system of 
mammals. The bronchial system of mammals (33) matches less well 
than systems that involve the movement of liquids, probably because 
flow in the larger bronchi is turbulent (48) and bulk flow decreases 
in importance relative to diffusion in the smaller vessels. In these 
vessels, the assumptions underlying Murray's law are violated. A 
more general explanation for these discrepancies will be offered 
below. 

The Developmental Mechanism for 
Murray's Law Systems 

How do biological systems of such wide phylogenetic distribu- 
tion and differing functional roles all approach the architecture of a 
system of global optimality? What cues are available to organisms to 
use in generating such systems? In a Murray's law system, the shear 
stress (T) on the walls of the vessels (49) is constant and equal 
everywhere throughout the system (18). If the endothelial cells 
lining blood vessels had a mechanism for measuring local shear stress 
and comparing that value to some set point, growth or shrinkage of 
vessels in which the shear stress departed from the set point would 
automatically produce a system that followed Murray's law (5G 
53)-local responses could produce a globally optimal system. 

Evidence that endothelial cells in mammalian circulatory systems 
do indeed respond to local shear stress has accumulated in recent 
years (54); effects include flow-induced membrane K+ currents at 
T = 0.02 to 1.70 N m-' (55), protein secretion at arterial shear 
stresses (T = 1.5 to 2.5 N m-2) but not at venous shear stresses 
(7 = 0.4 N m-') (56), and membrane hyperpolarization that is a 
function of local shear stress up to 12.0 N mp2 (57). Long-term 
accommodations to surgically altered flow through the common 
carotid artery of dogs have been observed for both increased (up to 
fourfold) and decreased (as much as 96%) flow rates (51); over 6 to 
8 months, changes in the vessels' diameters returned the wall shear 
stress to its original value (58). A similar regulation of wall shear 
stress occurs in the iliac artery of Macaca  fasciculavis (59); 6 months 
after surgical intervention increased the blood flow by a factor of 10, 
the artery had doubled in diameter, returning wall shear stress to its 
original value (-  1.5 N m-'). Langille and O'Donnell (60) demon- 
strated that wall shear stresses were regulated through diameter 
changes in the common carotid arteries of rabbits. A 70% flow 
reduction yielded a diameter reduction of 21% (raising shear stresses 
to 61% of their original value) in 2 weeks. Diameter change was not 
merely due to wall thickening or chronic contraction of the smooth 
muscle of the vessel wall and was critically dependent on the 
presence of the endothelium; removing the endothelium abolished 
the response (61). Interestingly, the response appeared to be local; 
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regions of the arterial wall where the endothelium was incompletely 
removed showed local diameter reduction (60). 

A mechanism in which local shear stress determines the diameter 
of the vessel rationalizes the data for human and dog circulatory 
systems presented in Table 5. First, the shear rate set points for the 
arterial and venous endothelial cells apparently differ (56, 62); the 
mechanism determining this difference is unknown. Second, blood 
is a non-Newtonix1 fluid in which viscosity decreases when local 
shear rates increase; the effect is most pronounced in vessels with 
diameters smaller than about 300 p,m (31). Those vessels in which 
Zv3 departs most from the mean for the system, the arterioles and 
capillaries, are precisely those in which the effective viscosity of the 
blood should be most reduced. From the aorta through the 
capillaries, the wall shear stresses in the human systemic circulation 
range only from about 1.04 to 2.6 N mP2 (52); values for the venous 
circulation range from 0.14 to 0.63 N m-2 (63). 

Approximate values for the shear rate (TIP) (64) in the vessels of 
two species of sponges (Tables 6 and 7) all lie within a factor of 3 
for each sponge; here, too, vessel diameter may be determined by 
the response of the cells lining the vessels to local shear stress. Such a 
response would also account for the extreme discrepancies in the Zr3 
values for the choanocyte chambers and apopyles (excurrent open- 
ings of the choanocyte chambers) of the sponges in Tables 6 to 8. 
Flow in sponges is driven by the choanocytes' flagella; flow in the 
choanocyte chambers and apopyles is assuredly lanlinar 
(Re = lop3), but it is also assuredly not the parabolic velocity 
profile assumed in Poiseuille flow. In lieu of actual measurements of 
the velocity profile or local shear stress, these vessels cannot be 
included in the analysis. Do the cells lining the vessels in the fluid 
transport system of sponges respond to local shear stress? To date, 
only the endothelial cells in the vascular system of mammals have 
been investigated for sensitivity to shear stress. 

A mechanism dependent on local shear stress clarifies some of the 
controversies. At every branch point in a system of branching pipes, 
the velocity profile will be temporarily altered. Near a branch point 
in large vessels, the medial sides of the daughter vessels will 
experience higher velocities and the lateral sides lower velocities than 
in fully developed flow (Fig. 3B) (65-68). Medial cells should 
respond as if they were in a vessel too small (shear stresses too high) 
and lateral cells as if they were in a vessel too large (shear stresses too 
low); unless the response is averaged around the vessel [see (69)], 
the result would be to alter branching angles to higher values than 
predicted from Murray's law. Because entrance or inlet length 

Table 6. The trophic fluid transport system of the sponge Hali~lonnpermollic. 
Note that the Xr3  is constant with a factor of 3 for all vessel types except 
the choanocyte chambers and apopyles (excurrent openings from the 
choanocyte chambers). Shear rate (T/F), which is proportional to shear stress 
on the vessel walls, follows a slrnilar pattern (64). The excursion of values in 
the choanocyte chambers and apopyles is explained in the text. Data from 
(93) for a 100-pl mature segment. Radii are mean values (in micrometers); 
where means were not given, the midpoint of the range was used. Numbers 
of elements were calculated from the mean radIus and the total cross- 
sectional areas given; the value for the osculum is the proportional fractional 
part of the whole. Xv3 values have been divided by 10' pm3. 

Vessel RadIus Number 

Ostia 
Inhalant canal apertures 
Prosodi 
Prosopyles 
Choanocyte chambers 
Apopyles 
Exhalant canal apertures 
Osculum 

Table 7. The trophic fluid transport system of the sponge Leuratrdra aspera, 
after (95); vessel designations follow the original source. Values for C S  and 
T/F (64) are relatively constant; the choanocyte chamber value is explained in 
the text. Average radius was calculated from aggregate cross-sectional areas 
and cited numbers of each element; the X? values have been divided by lo9 
pm3. Conventions are as in Table 6. 

Vessel Radius Number 

Merent calals 40.6 8.1 x lo4 5.43 123 
Choanocyte chambers 27.3 2.25 x 10' 46.5 
Efferent canals 123.7 5.2 x lo3 9.84 68 
Atrium 2585 1 17.3 39 
Osculum 1405 1 2.77 242 

(distance to reestablish a parabolic velocity profile) is a function of 
Re, these effects should be greater in larger vessels (which have both 
a greater radius and flow velocity). This is the pattern seen in angles 
of branching in the human pulmonary artery (radii from 0.84 cm to 
350 pm); smaller parent vessels better fit Murray's law than larger 
parent vessels (21). In small arterioles (radius 10 to 35 pm), the 
inverted pattern of velocity profile distortion (70) (Fig. 3C) implies 
that the angle of branching should decrease. When flows from two 
vessels merge (the venous system in mammals, the excurrent vessels 
in sponges,-exhalation in thk lungs), higher velocities occur near the 

Fig. 3. Velocity profiles 
at branch points in ves- 
sels. In all cases, Re is 

r assumed to be well be- 
A 'I low the critical value for 

turbulent flow ( ~ 2 0 0 0 ) ;  
arrows indlcate the di- 
rection of flow. The flow 
in upstream vessels is as- 
sumed to be fully devel- 
oped Poiseuille flow. 
The b ranchg  is assumed 
to be symmetrical; asym- 

B -; metrical b ranchg  wdl 
d~stort the patterns 
shown but will not affect 
the qualitative relations. 
Local shear stress on the 
vessel wall will be propor- 
tional to the velocity gra- 
dIent; the closer the point 
of maximum velocity lies 
to a wall, the Iugher the 
local shear stress. (A) The 
i d e k d  flow pattern im- 
plicit in the derivation of 
Murray's law; in all ves- 
sels, the velocity profile is 
assumed to be fully devel- 
oped. The maximum ve- 
locity is found at the cen- 
ter of the vessels, and the 

i 3- velocity profiles are pa- 
I rabolas: the maximum ve- 

locity is twice the average 
velocity. (B) Velocity 
profiles at branch points 
in large vessels (100 < Re 

< 1500). Because the flow divider at the branch point intersects the regon of 
highest velocity in the parent vessel, the velocity profiles in the daughter vessels 
are skewed toward the medIan sides. (C) Velocity profiles at branch points in 
small vessels (Re = lo-' to The influence of the branch divider is felt 
upstream so that the velocity profiles in the daughter vessels are skewed toward 
the lateral walls. (D) Velocity profiles at a confluence of vessels. The profile of 
the merged flows shows a double peak with a minimum (but nonzero) velocity 
on the axis. 
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Table 8. The trophic fluid transport systems of the sponges Haliclotia panicea and Microciona prol+ra. The major deviations for Xr3  occur in the choanocyte 
chambers and apopyles; see text. Calculations and conventions are as in Table 6.  

Vessel 
Haliclona patiicea Microciotia proljfira 

Radius Number X? Radius Number 8 ? 

Ostia 
Inhalant canal apertures 
Prosodi 
Prosopyles 
Choatlocyte chambers 
Apopyles 
Exhalant canal apertures 
Osculun1 

walls and lower velocities in the center of the vessel (Fig. 3D) than 
in idealized Poiseuille flow (66). This is consistent with the generally 
higher values for Cv3 in the venous system of mammals and the 
excurrent vessels of sponges (Tables 5 through 8). 

Such secondary phenomena may also explain the generally better 
fit of data from circulatory systems than data from bronchial systems 
to Murray's law. On average, a bronchial tube is only 3.5 diameters 
long between branch points (48); a large part of these segments will 
be affected by the disturbed flow downstream of each branch (71). If 
shear stress is the signal used to generate these systems, vessel 
diameters are a poor test of optimality when the &stance between 
branch points is small compared to the vessel diameter. In addition, 
because it is a tidal flow system, the local velocity profiles change 
shape when flow direction reverses (Fig. 3, B and D). 

Derivations of optimal (minimal power loss) angles of branching 
that assume uniform flow throughout the vessels [for example, (15, 
19-21, 42, 43)] ignore the true complexity of the hydrodynamics. 
Nevertheless, both flow visualization and pressure drop measure- 
ments (67, 68) indicate that a system modeled on Murray's law does 
surprisingly well in minimizing the flow disturbances at branch 
points. Matsuo et al.  (68) determined the loss coefficient at branch 
points in a fluid transport system; the loss coefficient was a function 
of the diameter ratio of the vessels, the angle of branching, and the 
exponent relating volumetric flow rate to diameter. (The latter was 
varied from 2 to 3; Murray's law is predicated on a value of 3.) 
Despite the idealization of the flow implicit in Murray's law, an 
exponent of 3 yielded a lower loss coefficient for all realistic diameter 
ratios. 

How General Are These Patterns ? 
The first three design principles hold for all fluid transport 

systems regardless of function or the geometry of the transfer 
region. Principle 4 (Murray's law) does not hold for fluid transport 
systems (again regardless of function) in which the transfer region is 
planar. Two factors appear to be at work in this case. First, 
dimensions of the vessels are not determined by local shear stress. 
Except in the transfer regions, the pipes are spaces (the oral cavity of 
fish, the mantle cavity of mollusks and brachiopods) with dimen- 
sions set by other determinants of morphogenesis. Second, total 
power loss in the system is directly minimized in that the diameters 
of all vessels except those in the transfer regions (which are short) 
are large and velocities in the transfer region are low. In these 
systems, there would appear to be no reason for natural selection to 
use the signal implicit in local shear stress. 

Fluid transport systems with distributed transfer regions present 
more interesting cases. Here, by definition, a complex arrangement 
of pipes must distribute the fluid throughout the organism. Natural 

selection can easily exploit a local shear stress signal; response of cells 
to their immediate hydrodynamic environment will globally mini- 
mize the costs of building and running the fluid transport system. 
Such a mechanism is simple to implement and robust to changes in 
size, complexity, or activity during the development and growth of 
the organism. 

Given the magnitude of organismal diversity, the available evi- 
dence on this point is meager. Closed circulatory systems have been 
described in cephalopod mollusks, annelids, and nemertine worms, 
but quantitative data on vessel radii or the relation between vessel 
radius and volumetric flow rate are lacking for animals other than 
vertebrates. The same is true for all animals with open circulatory 
systems (bivalve and gastropod mollusks and arthropods). Corro- 
sion casts of the vascular systems of cephalopods (72-74), gastro- 
pods (74, 75), and decapod crustaceans (76) show the qualitative 
features expected. One would predict that vessels in open circulatory 
systems (which are lined with an endothelium) should follow 
Murray's law whereas the sinuses (which lack an endothelium) 
should not; quantitative data would be welcome. Despite the 
limitations of the available data, it strains credulity to believe that the 
only three systems for which quantitative data are available (spong- 
es, stromatoporoids, and mammals) match the paradigm of Mur- 
ray's law by chance, particularly given the phylogenetic distance 
between sponges and mammals. The stromatoporoid data imply 
that exploitation of a local shear stress signal to produce a near- 
optimal organism-spanning network of vessels evolved early in the 
Phanerowic (by the Devonian at the latest). 

The few obvious exceptions to Murray's law in organisms with 
demonstrated fluid transport systems and distributed transfer re- 
gions are more illuminating. Both the gastrovascular transport 
system in corals (Coelenterata) (77) and the coelomic circulatory 
system of crinoids (Echinodermata) (78) violate the rules of branch- 
ing implied by Murray's law. In both, however, the vessels are 
completely lined with ciliated cells that drive the flow. Because shear 
between the fluid and the vessel is entirely developed along the 
cilium (6, 79), no local shear stress signal is available to the cells 
lining the vessels. 

In seed plants, the hierarchy of vessels is strongly attenuated; most 
of the system (the stem and branches) consists of a parallel array of 
vessels (the xylem elements) of a limited size range (80, 81). Three 
factors oppose the evolution of a Murray's law system. First, the 
pipes consist of the cell walls of xylem elements; the vessels do not 
conduct fluids until the cell has died. Thus, no living tissue is present 
that can be used to detect local shear stress. Second, there may be an 
upper limit to the maximum diameter of vessel compatible with the 
tensile mechanism used by these plants to move water up the stem 
(80). Most cogent, however, is the irrelevance to the plant of the 
cost of moving fluids through the system; the pump is literally solar- 
powered (driven by evaporation from the leaves), and the plant 
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expends no metabolic energy in driving the flow. Even if a local 
shear stress signal were available to the plant, there would be no 
selective pressure to exploit it (82). 

The widespread presence of systems carrying fluids in laminar 
flow that meet the four principles given above is the result of 
convergent evolution. The first three rules are dictated by the short 
spatial distances over which the transfer processes are effective, the 
high power requirement involved in forcing fluids through narrow 
spaces, and the necessity to limit flow velocities past the transfer 
regions. The solutions to these problems are evolutionarily simple 
and straightforward. The problem of arranging a branching hierar- 
chy of pipes to deliver fluids to distributed transfer regions appears 
much more complex. Not only must the appropriate connections be 
made (83), but the system must be tuned to a global optimum if the 
costs of building and running the system are to be reasonable. That 
a simple signal, local shear stress, and local cellular responses to that 
signal can be used to construct a system that approximates minimal 
energetic expenditure is fortuitous, given the complex hydrodynam- 
ics implicit in such systems. The pathways open to evolution are 
indeed constrained, not because only one solution exists but because 
a simple local signal that will generally be available to cells in the 
vicinity of flowing fluids can be so easily utilized. 

Comparative studies of fluid transport systems can be a powerfd 
tool in analyzing how natural selection has exploited this o p p o m i -  
ty. In the bronchial system of mammals, the confounding effects of 
diffusion in the lower pathways, turbulent flow in the larger 
bronchi, and the change in local velocity profiles during inhalation 
and exhalation should be separable. Study of the bronchial system of 
smaller mammals should eliminate the effects of turbulent flow 
because Re's are decreased. Quantitative data on the respiratory tree 
of holothurians (Echinodermata) should allow isolation of the 
effects of changing velocity profiles (resulting from tidal flow) from 
the effects of difision along the tubes. Whether fluid transport 
systems simply use the signal of local shear stress or actually 
optimize the system to minimize costs of construction and operation 
could also be determined by comparative studies. Flow in the large 
arteries of mammals of greater body size than humans is certainly 
turbulent; the exponent relating diameter to flow should be 2.33 
rather than 3 (19) if these systems are truly optimized by natural 
selection. 
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In Situ Interfacial Mass Detection with 
Piezoelectric Transducers 

The converse piezoelectric effect, in which an electric field 
applied across a piezoelectric material induces a stress in 
that material, has spurred many recent developments in 
mass measurement techniques. These methods commonly 
rely on the changes in the vibrational resonant frequency 
of piezoelectric quartz oscillators that result from changes 
in mass on the surface of the oscillator. The dependence of 
frequency on mass has been exploited extensively for mass 
measurements in vacuum or gas phase, for example, 
thickness monitors for thin-film preparation and sensors 

for chemical agents. Advances in piezoelectric methodolo- 
gy in the last decade now allow dynamic measurements of 
minute mass changes (< grams per square centirne- 
ter) at surfaces, thin films, and electrode interfaces in 
liquid media as well. Mass measurements associated with 
a diverse collection of interfacial processes can be readily 
performed, including chemical and biological sensors, 
reactions catalyzed by enzymes immobilized on surfaces, 
electron transfer at and ion exchange in thin polymer 
films, and doping reactions of conducting polymers. 

T HE SIGNIFICANCE OF INTERFACIAL PROCESSES IN RE- 

search and commercial applications (such as sensors, electro- 
plating, and corrosion) has stimulated the development of 

methodologies that probe interfacial processes and chemistry at 
surfaces and thin films. Advances in piezoelectric methods in the last 
decade now make possible in situ determination of minute mass 
changes that occur at thin films and surfaces under a variety of 
conditions, including liquid media. The low cost and procedural and 
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conceptual simplicity of these methods portend broad development 
of commercial and research applications. In this article we discuss 
the fbdamental properties, methodology, and examples of recent 
applications that highlight the versatility of these mass-sensing 
piezoelectric transducers. 

Piezoelectricity 
In 1880, Jacques and Pierre Curie discovered that a mechanical 

stress applied to the surfaces of various crystals, including quartz, 
rochelle salt (NaKC4H4O6 * 4H20) ,  and tourmaline, afforded a 
corresponding electrical potential across the crystal whose magni- 
tude was proportional to the applied stress (1). This behavior is 
referred to as the piezoelectric effect, which is derived from the 
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