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The Role of B Cells for in Vivo T Cell Responses to a 
Friend Virus-Induced Leukemia 

B cells can function as antigen-presenting cells and accessory cells for T cell responses. 
This study evaluated the role of B cells in the induction of protective T cell immunity to 
a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient 
mice exhibited significantly reduced tumor-specific CD4+ helper and CD8+ cytotoxic 
T cell responses after priming with FBL or a recombinant vaccinia virus containing F- 
MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia 
viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively 
eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but 
not expression of tumor and viral T cell immunity. 

CELLS ARE PART OF A HETEROGE- 

neous population of antigen-present- 
ing cells (APCs) that can activate 

CD4+ helper T cells (1). The role of B cells 
in the indiction and expression of in vivo T 
cell responses has been previously evaluated 
by rendering mice deficient in B cells by 
treaunent from birth with high doses of 
rabbit antibody to mouse irnm<noglobulin 
M (IgM) (anti-p,) (2). These B-cell-defi- 
cient mice do not generate antigen-specific 
T cell responses after in vivo priming with 
hapten, a defect reflecting the requirement 
for B cells to function in vivo as APCs for T 
cells (3). The role of B cells in the in vivo 
presentation of larger, more complex anti- 
gens and the induction of CD4' helper and 
CD8+ cytotoxic T cells is less clear. Howev- 
er, in vitro analysis of the response to large 
proteins such as thyroglobulin and vesicular 
stomatitis virus has demonstrated efficient in 
vitro activation of primed T cells by B cells, 
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suggesting that B cell-APCs can potentially 
contribute to priming to large protein and 
viral antigens in vivo (4). 

B cells could be particularly important for 
the induction of T cell responses to tumor 
cells, since limitations in antigen presenta- 
tion could result from deficiencies in APC 
number and function that occur secondarily 
to progressive tumor growth or therapy ( 5 ) .  
We have previously evaluated the T cell 
responses of C57BL16 (B6) mice to FBL, a 
Friend murine leukemia virus (F-MuLV)- 
induced leukemia that expresses retrovirally 
encoded antigens and only class I major 
histocompatibility complex (MHC) anti- 
gens, but induces both CD4' and CD8' T 
cell responses (6, 7). The CD4+ T cell 
response requires APC-expressing class I1 
MHC antigens to process and present FBL, 
includes T cells that produce both interleu- 
kin-2 and interleukin-4 (IL-2 and IL-4), and 
is primarily directed at F-MuLV envelope 
epitopes. The qtolytic CD8' T cell re- 
sponse includes IL-2dependent and IL-2- 
producing T cells that predominantly recog- 
nize F-MuLV Gag epitopes (6,  7). Adoptive 
transfer of FBL-specific T cells can com- 
pletely eradicate disseminated FBL (6, 8- 
10). This FBL tumor model, with well- 
characterized T cell responses to tumor- 

*To whom correspondence should be sent at Depart- 
ment of Pediatrics, Wayne State University, Detroit, MI antigens, was used to 
48201. evaluate the role of B cells in the induction 

and expression of T cell responses to a 
tumor. The results demonstrate that B cells 
can play an essential role in the induction of 
in vivo T cell responses to retrovirally in- 
duced tumor cells. 

Anti-p,-treated B6 mice were injected 
with FBL tumor cells, and the participation 
of B cells during in vivo priming was evalu- 
ated by measuring in vitro secondary T cell 
responses to FBL (7). B cell depletion was 
complete and selective; no I ~ M +  cells or 
serum IgM could be detected, the B cell 
mitogen lipopolysaccharide (LPS) elicited 
no proliferative response, whereas the T cell 
mitogen conconavalin A (Con A) elicited a 
normal response ( I  I). After immunization 
with FBL, the proliferative response to FBL 
of splenic T cells from anti-p,ltreated mice 
was 50% that of control mice (Fig. l), and 
essentially no response was detected in 
lymph node cells. These data, consistent 

Spleen Lymph node 

Fig. 1. Contribution of B cells to primary FBL- 
specific proliferative T cell responses. Spleen or 
lymph node cells were obtained from B6 mice (H- 
Z ~ )  (Jackson Laboratory, Bar Harbor, Maine) 
treated from birth with rabbit IgG (solid bars) or 
anti-p (hatched bars) and primed intraperitoneal- 
ly at 6 to 9 weeks of age in vivo with 10' 
irradiated FBL. Responder cells (5 x lo5), ob- 
tained 6 weeks after priming, and irradiated stim- 
ulator cells were cultured in 96-well, flat-bottom 
plates in RPMI 1640 containing 10% fetal bovine 
serum (FBS), 2.5 x 10' M 2-mercaptoethanol, 
p e n i c h  (100 Ulrnl), streptomycin (100 mglml), 
and L-glutamine. Cells were stimulated in vitro 
for 72 hours at a responder to stimulator ratio of 
100: 1 and assayed for incorporation of [3H]thy- 
midine. Data are presented as the mean difference 
with standard error bars in [3H]thymidine uptake 
in FBL-stimulated and unstimulated cultures and 
represent one of three experiments. 
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with results obtained with other less com- 
plex immunogens, show that B cells make a 
more significant contribution to the priming 
of lymph node T cells than splenic T cells. 
This could result from splenic B cells having 
functional qualities distinct from lymph 
node B cells such as class &antigen density 
or from the fact that alternative AM= are 
more available for priming in the spleen (12, 
13). The effector T cell response to FBL 
includes, in addition to the proliferative 
helper and inflammatory CD4+ T cells, cy- 
tolytic CD8+ T cells (6-4, and a weak 
CD8+ FBL-specific T cell response was also 
detected in B cell-depleted mice (Fig. 2). 
Thus, a deficiency of B cells resulted in 
inefficient in vivo priming of proliferative 
CD4+ and cytotoxic CD8+ T cell responses 
to immunogenic tumor cells. 

The weak FBL-specific cytotoxic T cell 
responses detected in the B cell-depleted 
mice may result from the lack of s&cient 
FBL-specific CD4' T cell help required to 

- - 

generate the cytotoxic T cell response, or, 
alternatively, efficient priming of the CD8+ 
T cell popdation may-require a direct effect 
of accessory B cells on this subset. Although 
CD8+ FBL-specific T cells that produce I G  
2 are present after priming (9), the Erequen- 
cy of these helper-independent CD8+ T cells 
reactive with FBL was too low to detect 
&cient priming of the CD8+ subset in 
mice depleted of CD4+ T cells (14). In 
contrast, vaccinia-specific CD8+ T cells can 
be primed to the more strongly immuno- 

Fig. 2. Contribution of B cells to priming for 
cytolytic m p o f l ~ e ~  to FBL in (A) spleen and (B) 
lymph nodes. B6 responder splenocytes, primed 
as in Fig. 1, from control rabbit IgG-mzated mice 
(0) or anti-p-treated mice (W) (6 x lo6 cells per 
well), wcrc cultured with 3 x lo5 irradiated FBL 
(10,000 R) in 24wcll plata (Costar, Cambridge, 
Massachusetts) for 5 days with 10% FBS. Cyto- 
toxicity of the df'r cells was evaluated in a 
standard 4hour 51Cr-relcasc assay with labeled 
FBL targets at the indicated dfcctor to target 
ratios (E:T). Percent-s@c lysis was evaluated 
by measuring the cxpcrimental minus spontane- 
ous rclcascd divided by total minus sponta- 
neous 51Cr released. S@city was demonstrated 
by the ability of the FBL-reactive effectors present 
in rabbit IgGmated control micc to lyse FBL, 
but neither chemically induced syngcncic EL-4 
tumor cells nor autologous Con A blasts. Similar 
results were obtained in two independent aperi- 
mcnts. 

genic vaccinia virus in CD4+-depleted mice 
(15,116). Therefore, the role of B cells during 
in vivo priming of both CD8+ and CD4' T 
cell subsets was assessed by examining, in 
anti-p-treated mice, both the FBGspecific 
proliferative response after priming with a 
recombinant vaccinia virus containing the F- 
MuLV envelope gene (vac-env), an immu- 
nogen capable of inducing CD4+ FBL- 
specific T cell responses, and the vaccinia- 
specific proliferative response of CD4+ and 
CD8+ T cells (7, 15-17'). Vac-env immuni- 
zation, in IgG-treated control mice, primed 
mice for a strong proliferative T cell re- 
sponse to FBL (Fig. 3A), as well as to 
vaccinia antigens (Fig. 3B). In contrast, B 
cell-depleted mice had no sigdcant prolif- 
erative T cell response to FBL or vaccinia 
(Fig. 3, A and B). Thus, B cell depletion 

interfered with priming to FBL tumor anti- 
gens, even if presented in the context of a 
highly immunogenic recombinant vaccinia 
vi&.  oreo over, the lack of a detectable 
sigdcant T cell response to vaccinia in B 
cell-depleted mice implied that B cells may 
be imkrtant for pr&g both T cell sub- 
sets. This was firher examined by evaluat- 
ing the response of each T cell subset from 
in- mi& primed to vaccinia antigens. 
Puri6ed CD8+ and CD4' T cells proliferat- 
ed in response to vaccinia (Fig. 3C), compa- 
rable to the responses detected in the unfiac- 
tionated T cell population. This is consistent 
with studies demonstrating vaccinia can 
prime CD8' cytotoxic T cells by way of a 
CD4' helper T ~e~ndependen t  pathway 
(15, Id). Thus, B cells may be required to 
make a direct contribution for dcient in 

Responder: B6aulcsnv "avadu Responder: B6,,=.,, B6avwau 

Responder: 86 86av,-flu 86 86,-~ 86 B 6 m f l u  

Fig. 3. Contribution of B cells to priming with a recombinant vaccinia virus. Spleen cells wcrc obtained 
from control rabbit IgG-treated mice or a n t i - m t e d  micc immunized by tail scarification with 10 pl 
(10' plaque-forming units per milliliter) of either van-env (recombinant vaccinia virus expressing the F- 
MuLV envelope), B6,,.,, or vac-flu (rccombiiant vaccinia virus expressing the influenza hemagglu- 
tinin gene), B6,,.(lu (provided by P. Earl and B. Moss) (7) and evaluated 4 weeks later. (A) 
Responder splenocyta from either control (solid bars) or B cell-depleted (hatched bars) micc wcre 
stimulated in vim with irradiated FBL for 3 days, and proLiferation was measured as in Fig. 1. (B) 
Responder splenocytes as ddined above wcrc stimulated with macrophages infected with vac-flu at a 
multiplicity of infection of 1 : 1 and proliferation measured as in Fig. 1. (C) Spleen cclls from unprimcd 
B6 mice or vac-flu-primcd micc were used either unfhctionated or after purification into CD8+ and 
CD4' T cell subsets as previously described (7). S u b  purity was documented phenotypically with 
fluorescent antibodies and functionally by the ability of only CD8+ T cclls to proliferate in response to 
the unique class I do-stimulator Mbm' or CD4+ T cells to the unique class I1 do-stimulator B6bm12 
(7). ~ e s k n d e r  cclls (8 x I d  per well) wcre cultured with either 2 x 'lo5 irradiated spleen cclls infected 
with vaccinia virus (solid bars) at a multiolicitv of infection of 1 : 1 or 4 x 1 d  irradiated B6bm1 (shaded 
bars) or B6bm'2 (Gched b k ) ,  as indicited, k d  proliferation measured as described in the leiend to 
Fig. 1. The data represent one of t h m  experiments. 
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Fig. 4. Effect of B cell Control 1gG + CY + 5.0 x lo6 T cells 
depletion on adoptive 100 

cell therapy of dissemi- 
nated FBL. B6 mice 80 
treated from birth with 
either rabbit (control) . 
IgG or anti-p. antibody .: 60- 
were inoculated with ; 
5 x lo6 FBL tumor cells 
on day 0 and received 
either no therapy, cyclo- 
phosphamide (CY) (180 
mgtkg) on day 5, or CY 20- 
plus a high dose 
(5 x lo6) or low dose 
(0.5 x lo6) of purified 
B6 anti-FBL immune T n 20 40 60 80 -- 
cells (>95% Thyl.2+) 
with four to eight mice 

. . -- -. 

Time (days) 

per group. immune cells 
were generated by immunization of B6 mice with lo7 FBL intraperitoneally 2 weeks apart (8, 10). Mice 
were monitored for tumor growth and survival, and all deaths resulted from progressive tumor growth. 

vivo priming of both the CD8' and CD4' as B cells may be particularly important for 
T cell subsets. inducing CD8' cytotoxic T cell responses to 

B cells may be important for induction of tumors in settings in which tumor-specific 
both CD4+ and CD8' T cell responses to CD4+ T cells are deficient or absent. 
tumor and viral antigens through several B6 mice with disseminated FBL leukemia 
mechanisms. B cells can act as APCs for can be cured by adoptive chemoimmuno- 
CD4+ T cell responses. The efficiency of B therapy with cyclophosphamide and FBL- 
cells functioning as APCs is enhanced ap- primed T cells (6, 8, 9). Since therapeutic 
proximately 1000-fold if the antigen is di- efficacy is dependent on antigen-induced in 
rectly bound by the Ig expressed on the B vivo proliferation of transferred cells (27), 
cell membrane (12, 18). This results both in we examined whether B cells were impor- 
internalization of antigen in endocytic vesi- 
cles, with processing into peptide fragments 
and presentation with class I1 MHC mole- 
cules and B cell activation, which enhances 
APC function (1 8, 19, 20). Consequently, B 
cells can serve a distinct APC function by 
taking up small amounts of tumor antigen 
present in the circulation or sequestered in 
lymph node follicular dendritic cells, for 
presentation to distant and nearby CD4' T 
cells (21, 22). These B cell-dependent pre- 
sentation mechanisms may be particularly 
important at times when limited amounts of 
antigen are present (23). Thus, even in hosts 
with no viral B cell function, tumor antigens 
potentially recognizable by CD4+ T cells 
but lacking B cell epitopes may not benefit 
from antigen presentation by B cells and 
may not elicit efficient CD4' T cell respons- 
es. Finally, although there is no evidence 
that B cells can take up cellular tumor 
antigens and introduce them into the en- 
dogenous pathway for presentation in the 
context of class I M H C  molecules, B cells 
may function as accessory cells for CD8' T 
cell responses by secretion of IL-1 or IL-6 
(24, 25). Tumor-specific IL-2-producing 
CD8+ cytolytic T cells, which may play a 
critical role in antitumor immunity because 
of their independence from CD4+ helper T 
cells (26), express IL-1 receptors, and re- 
quire IL-1 to initiate IL-2 secretion and 
proliferation (9). Thus, accessory cells such 

tant for the expression of adoptively trans- 
ferred T cell tumor i q u n i t y .  Therapy of 
B6 mice with adoptively transferred FBL- 
primed, purified T cells (>95% Thy 1.2+) 
resulted in a dose-dependent therapeutic 
effect, with a high cell dose (5 x lo6) curing 
100% of mice and a lower cell dose (0.5 x 
lo6) curing 63% 'of mice (Fig. 4). Treat- 
ment of B cell-deficient mice with these 
FBL-immune T cells resulted in an equiva- 
lent therapeutic effect at both cell doses. 
Thus, host B cells do not appear to make a 
requisite contribution to the therapeutic re- 
sponse of adoptively transferred tumor- 
primed T cells. These results suggest that B 
cells may be most important during the 
induction rather than expression of T cell 
responses to tumor. This may reflect the less 
stringent stimulatory requirements for sec- 
ondary T cell responses than primary re- 
sponses (28). The demonstration of the im- 
portance of B cell participation in the induc- 
tion of anti-tumor and anti-viral T cell im- 
munity suggests that efforts to promote 
reconstitution of B cell function in immuno- 
compromised patients in which B cells do 
not directly contribute to expression of im- 
munopathology (29) may not only enhance 
antibody responses but may also result in 
improved T cell immunity. 
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