
asteroids is 43, 120, and 194, respectively 
(Fig. 1); it is clear that the higher the 
ejection velocity, the greater the number of 
asteroids that can supply meteoroids to the 
escape channel. Because there are no known 
processes that would lead to extensive inter- 
mixing of diverse asteroids near the center of 
the Asteroid Belt, it seems likely that there 
are relatively few classes of iron meteorites 
near the 1 :  3 resonance. In addition, most 
asteroids may have silicates on their surfaces; 
thus, this comparison of the number of 
asteroids that can be sampled probably over- 
estimates the diversity of iron meteorites 
that this mechanism cbuld yield. 

The second escape channel involves per- 
turbations of meteoroids into Earth-cross- 
ing orbits resulting from close encounters 
with Mars (17, 19). Williams and Hierath 
(20) noted that 3% of the small PLS (Palo- 
mar-Leiden Survey) asteroids have perihelia 
that during some epochs are inside the 
aphelion of Mars; a much larger fraction 
have perihelia within a few tenths of an 
astronomical unit of the martian orbit. 
There are two reasons why a greater diversi- 
ty of iron meteoroids might be found in 
asteroids having small semimajor axes and 
relatively eccentric orbits. (i) The heat 
sources (such as solar wind-induced cur- 
rents, 26Al decay, or interasteroid collisions) 
all increase in effectiveness with decreasing 
distance to the sun; thus the proportion of 
differentiated asteroids formed at 5 2  AU 
should be significantly greater than that 
formed at greater heliocentric distances (21). 
(ii) The weak gravitational field of Mars is 
well suited to trap asteroids from elsewhere 
in the inner solar system into long lifetime 
(>lo9 years) storage orbits, an appreciable 
number of which will have survived until the 
present (10). 

The data of Williams and Hierath [figure 
5b in (20)] showed that 39 PLS asteroids 
cross Mars aphelion (- 1.7 AU). An addi- 
tional 35 have perihelia within 0.04 AU of 
Mars, 4 7  have perihelia 0.04 to 0.08 AU, 
and 80 have perihelia 0.08 to 0.12 AU from 
the orbit of Mars. Impact cratering of these 
asteroids is most likely near aphelion in the 
densely populated pa& o f  the  asteroid belt. 
To  reduce the perihelion by 0.04 AU, the 
aphelion velocity must be reduced by about 
110 m/s. The cumulative number of poten- 
tial-parent asteroids increases rapidly with 
increasing ejection velocity. 

The change in orbital velocity need not 
occur in a single impact event. After their 
initial liberation, large ( > l o  m) meteoroids 
will collide with comparably sized objects; 
such events will often involve additional 
fragmentation. Each of these jostlings will 
result in changes in the orbital parameters 
and a random-walk change in these parame- 

ters away from those of the parent body. 
Clearly, the more jostling events a meteor- 
oid has undergone, the-geater the mean 
change in its orbital parameters. On the 
average, the smaller the meteoroid, the more 
jostlings it will have experienced. 

In summary, both the primary ejection 
from the parent body and the subsequent 
collisions with small space debris will cause 
the orbits of smaller meteoroids to differ 
more from those of the parent asteroids than 
do those of larger meteoroids. As a result, 
the number of parent asteroids providing 
small debris to the channels that allow es- 
cape from the asteroid belt will be greater 
than the number parental to the large mete- 
oroids reaching these channels. The Antarc- 
tic meteorite collection is particularly valu- 
able because it has a much higher efficiency 
for the collection of these unusual meteor- 
oids having small masses (22). 
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Slow Mortality Rate Accelerations During Aging in 
Some Animals Approximate That of Humans 

A general measure of the rate of senescence is the acceleration of mortality rate, 
represented here by the time required for the mortality rate to double (MRD). Rhesus 
monkeys have an MRD close to that of humans, about 8 years; their shorter life-span 
results mainly from higher mortality at all ages. In contrast, some groups.with short 
life-spans (rodents and galliform birds) have shorter MRDs and faster senescence. On 
the basis of the Gompertz mortality rate model, one may estimate the MRD from the 
maximum life-span (t,,,,,) and the overall population mortality rate. Such calculations 
show that certain birds have MRDs that are as long as that of humans. These results 
show that high overall mortality rates or small body sizes do not preclude slow rates of 
senescence. 

A CCELERATIONS OF THE ADULT from comparisons of maximum life-spans 
mortality rate during aging (1-5) (t,,,) that the rate of senescence slowed 
parallel the increasing incidence of during evolution in human ancestors, as well 

spontaneous degenerative diseases in hu- as in other mammals (8-10). Because t,,, 
mans and certain rodents (6,7) .  It is inferred depends on the acceleration of mortality rate 
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but also on environmental dangers that may 
be independent of adult ages, erroneous 
conclusions about the rate of senescence 
may be drawn from tmax alone. 

Many studies indicate that life-span, like 
other highly plastic life history traits, is 
subject to selection (11); for example, the 
reversible changes of Dvosophila life-span 
during artificial selection for altered repro- 
ductive schedules is subject to selection (12). 
Altered life-spans in these lines, however, 
could result from changes in mortality that 
were independent of the rate of senescence. 
One approach to evaluating the relation- 
ships between life-span and senescence is to 
estimate the rate at which mortality acceler- 
ates in a population. 

Exponential accelerations of mortality 
rates in humans and certain other animals 
are shown by graphing the natural loga- 
rithm (In) of mortality rate, m(t), against 
age. As shown in Figs. 1 and 2, ln[m(t)] is 
commonly linear over most of the adult life 
phase; thus, m(t) is well represented by the 
Gompertz equation (1, 2-4, 10): 

where m(t) is the mortality rate at adult age 
t; cr is the rate constant for age-related 
increases of mortality; and A represents 
aggregate environmental dangers, for exam- 
ple, from predation, malnutrition, or risky 
behaviors. With the Gompertz model MRD 
depends only on a. Solving Eq. 1 for MRD 
gives 

MRD = ln 2/ci (2) 

Species comparisons in mortality rate accel- 
erations are aided by calculations of the 
MRD (2-5), because MRD changes in the 
same direction as life-span. Mortality rates 
may also be described by additional coeffi- 
cients (Gompertz-Makeham model) (13) or 
by other power functions (Weibull model), 
in which the MRD changes with age (14). 
Because neonatal mortality rates often vary 
widely between populations (1,3), we calcu- 
late A at puberty, when mortality is least in 
most feral and domestic populations (1, 3, 4, 
11), and designate this value as the initial 
mortality rate (IMR) (15). 

Despite major differences in overall mor- 
tality rates between diverse human popula- 
tions, MRDs are stable at 7 to 8.5 years, 
about 30-fold longer than in laboratory 
rodents (1-4). Comparison of different adult 
human populations show parallel curves of 
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the natural logarithm of mortality [for ex- 
ample, India in 1900 versus Sweden in 1950 
(1, 3)], which implies that MRD is stable 
under lifelong adverse or good conditions. 
Moreover, MRD is also remarkably stable 
during briefer adversity [for example, con- 
centration camp conditions that caused 30- 
fold overall increases of mortality rate (3, 16) 
(Fig. l ) ] .  The provisional assumption that 
other species also show a resistance of MRD 
to environmental factors makes it possible 
for one to compare diverse species without 
knowing the equivalence of their habitats. 

Calculations of MRD and IMR from age- 
specific mortality data of laboratory popula- 
tions (Table 1)  support previous analyses (2, 
4, 5). The MRDs of hamsters, mice, and rats 
are less than 0.5 year and are about 1 year 
for gerbils and white-footed mice (Pevomys- 
cus). Values of IMR for inbred mice and rats 
raised under modern conditions are 10- to 
500-fold greater than for larger mammals. 
Two well-kept colonies of rhesus monkeys 
(17, 18) that had not previously been ana- 
lyzed for age trends showed MRDS as 
lengthy as those in humans (Table l ) ,  
whereas the IMR for the rhesus monkeys 
was 100-fold greater than in most human 
populations. Thus the threefold longer tmax 
of humans compared with rhesus monkeys 
derives mostly from smaller IMR. This sug- 
gests that increases in life expectancy during 

/ 

//i" - POW, 1945 
, +  - - Aus.. 1944-1 945 

Age (years) 

Fig. 1. Mortality rates as a function of age in three 
human populations (Gompertz mortality rate 
plots, Eq. 1): POW, Australian prisoners of war 
in concentration camps of the Japanese Army 
during World War I1 (3, 16); Aus., civilians in 
Australia, 1944 to 1945 (3, 16); U.S. female, 
white women in the 1980 U.S. census; the devi- 
ations from the line at younger ages could repre- 
sent effects from cohorts with different values of A 
or M (13). The POW data (3, 16) are replotted 
here for ages up to 75 years. Mortality coefficients 
for U.S. females are given in Table 1. The slopes 
(In a versus age) for the three populations are 
indistinguishable, whereas IMR ranges tenfold. 
Similar shifts in IMR with little effect on MRD 
are shown for Netherlands males during and just 
after World War I1 (3). 

evolution might result from lowered IMR, 
as well as from slowed senescence (length- 
ened MRD), the latter of which was pro- 
posed to be the main evolutionary change 
(8, 9). MkDs of certain domestic galliform 
birds (Fig. 2) lie between values for rodents 
and dogs but are longer in feral herring gulls 
(Table 1). 

Mortality data for calculating MRDs are 
often lachng in feral species, and only t,,, 
is reported for many birds. Although it is 
difficult to detect age-related increases in 
mortality rates in some feral birds with high 
t,,, (19-21), Botkin and Miller (22) showed 
that the tmax is less than that predicted 
from constant mortality rates. Because 
short-lived birds clearly show mortality ac- 
celerations (Fig. 2), we developed a method 

Table 1. Gompertz analysis of mortality rate 
constants. Calculation from the Gompertz model 
from mortality rates by age group (Eq. 1, Figs. 1 
and 2). IMR was estimated at puberty (Eq. 1); 
MRD was calculated from the age-related mortal- 
ity coefficient, a (Eq. 2). Data needed for the 
analysis of mortality rate changes with age are 
usually not available in primary form, for exam- 
ple, as mortality schedules by age group or exact 
life-spans. Most reports present graphs of the 
fraction surviving as a function of age, from 
which we extracted average survival by age group. 
Mortality schedule data were used when available, 
as indicated. Mortality rates were estimated on the 
basis of the fraction surviving at each age and 
were analyzed by linear regression (Figs. 1 and 2). 
Because these populations were generally small 
(<loo),  we did not calculate confidence intervals. 
These regressions of ln[m(t)] on t had correlation 
coefficients that were significant in all cases 
(P < 0.05). In Sacher's (4) analysis of dog and 
horse [data from (I)], the values represented only 
one of several stocks or genotypes; values in Table 
1 are averages recalculated for all types of that 
species in the cited report. Mortality schedules by 
age group were available for humans, rhesus 
monkeys, and herring gulls; these data were ana- 
lyzed according to Eq. 1 on the basis of maximum 
likelihood estimates, with significance as indicat- 
ed. The source of data for each species is given in 
(33). 

Animal MRD IMRi t,,, (years), year (years) 

Mammals 
1. Lab mice 0.27 0.03 4.5 
2. Lab rat 0.3 0.002 5.5 
3. Lab gerbil 0.9 0.1 3.8 
4. Lab hamster 0.5 0.025 3 
5. White-footed 1.2 0.06 8 

mouse 
6. Domestic dog 3 0.02 20 
7. Horse 4 0.0002 46 
8. Rhesus monkey 15 0.02 >35 
9. Human 8 0.0002 >110 

Birds 
10. Japanesequail 1.2 0.07 5 
11. Reeves pheasant 1.6 0.02 9.2 
12. Brush turkey 3.3 0.045 12.5 
13. Peafowl 2.2 0.06 9.2 
14. Bengal h c h  2.5 0.1 9.6 
15. Herring gull 5 0.17 49 
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to estimate MRD from the average adult 
mortality rate and t,,, in the absence of age- 
specific mortality data. 

The proportion of a population surviving 
from puberty to adult age t, S(t), may be 
obtained from Eq. 1: 

For a population of size N, the age at which 
the population has diminished to one survi- 
vor [S(t) = 1/N] approximates t,,,. Thus, 

The average mortality rate, A,,, of a 
steady-state population subject to age-spe- 
cif~c mortality rates of Eq. 1 is (23), 

For a given A,,, t,,,, and N, Eqs. 5 and 6 
can be numerically solved for A and a 
(Table 2). MRDs were calculated for a 
range of N, because population sizes are 
unknown. Test populations (Ns) of lo3 to 
lo6 influenced MRD within a two- to three- 
fold range (Table 2); larger populations, of 
course, give shorter MRDs. Despite this 
imprecision, certain conclusions can be 
drawn. On the basis of mortality data from 
banding in feral populations, pipestrelle bats 
show a long MRD (Table 2) that was not 
expected from the t,,, and that is as long as 
in horses (Table 1). The absence of joint 
degeneration by 19 years in a related bat 
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Flg. 2. Mortality rates plotted as a function of age 
for two short-lived species of birds, (A) Japanese 
quail and (B) brush turkey, which show accelera- 
tions of mortality that can be fitted by the Gom- 
pertz model of mortality (Eq. 1). The age-specific 
mortality was extracted from survivorship graphs 
(1, 38). Mortality coefficients are in Table 1. 

(24) also indicates slow senescence. At least 
five feral birds also have long MRDs (Table 
2). For herring gulls, mortality schedule 
data also permitted analysis by Eq. 1 (Table 
1); thus, the two approaches gave similar 
MRDs and IMRs. Long MRDs are consist- 
ent with slow senecence in marine birds that 
remain fertile for at least several decades (21, 
25, 26). Moreover, small size does not pre- 
clude a long MRD, as seen in adult pipe- 
strelle bats and certain birds (Table 2). 
Other analyses (27) show that the t,,, of 
bats exceeds predictions based on body size 
from other mammals (4, 5) and that body 
size in general does not rigidly constrain 
variations in reproductive schedules or life- 
spans (28). 

Thus, a short t,,, from high IMR does 
not rule out a long MRD. That is, a short 
t,,, is still compatible with slow pathophys- 
iological senescence. This result raises con- 

Table 2. Mortality rates estimated in the absence 
of mortality data by age. Calculation of IMR and 
a from reported A,, and t,,, (Eqs 5 and 6) (42) 
for populations of different sizes, N. The source of 
data for each species is given in (43). 

A,,/year IMW MRD/ t,,, 
year year (years) 

1. Pipestrelle bat 
0.36 11 

N = lo3 0.25 4.7 
N = 104 0.22 3.4 
N = lo5 0.20 2.8 
N = lo6 0.19 2.5 

15 
N = lo3 0.32 14.9 
N = lo4 0.28 7.5 
N = lo' 0.26 5.7 
N = lo6 0.25 4.7 

2. European robin 
0.62 12 

N = 10' could not reach t,,, 
N = lo4 0.58 15.3 
N = lo5 0.54 7.9 
N = lo6 0.52 5.8 

3. Lapwing 
0.34 16 

N = lo3 0.30 16.4 
N = lo4 0.27 8.2 
N = lo5 0.25 6.0 
N = lo6 0.24 5.1 

4. Starling 
0.52 20 

N = could not reach t,,, 
N = lo5 0.51 56.6 
N = lo6 0.49 21.2 

5. Common swift 
0.18 2 1 

N = 103 0.12 8.2 
N = lo4 0.10 6.0 
N = 10' 0.094 5.1 
N = lo6 0.088 4.5 

6. Herring gull 
0.04 49 

N = lo3 0.0060 7.2 
N = lo4 0.0046 6.3 
N = lo' 0.0037 5.7 
N = lo6 0.0032 5.4 

cerns about inferences about the rates of 
senecence from life-span statistics that do 
not resolve the contributions from mortality 
accelerations. The long MRDs of many 
mammals and birds renew questions about 
rates of senescence in mammalian ancestors 
(8, 9), particularly because Mesozoic placen- 
tal mammals were rat-sized (29). The long 
MRD of pipestrelle bats weakens predic- 
tions from size alone that early mammals 
necessarily had short t,,, or rapid senes- 
cence. Thus, the fast MRDs of some short- 
lived rodents and galliform birds could rep- 
resent independent accelerations of senes- 
cence during divergence from more slowly 
senescing ancestors. Most avian descriptions 
of fast senescence and short MRD are re- 
stricted to galliform birds: chicken (30), 
Japanese quail, Reeves pheasant, brush tur- 
key, and peafowl (Table 1). Domestic chick- 
ens show reproductive and other senescent 
changes by 4 years of age (30), which is a 
decade or more before reproductive declines 
in many marine birds (21, 25, 26). The 50- 
year lifespan of the Australian echidna (31), 
an egg-laying mammal, implies a long MRD 
and slow senescence, as does the great t,,, 
of some turtles (1). 

Exponential accelerations of mortality 
during aging are not usually specified in 
analyses of life history evolution (1 1, 12, 28) 
but would require genetic variation to be 
selectable. Laboratory nematode genotypes 
that lengthen t,,, and MRD, but without 
effect on IMR (32), support this possibility. 
In conclusion, genetic variants influencing 
IMR and MRD may both be substrates for 
evolutionary changes in life expectancy. 

-- - - - - - - 
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