
(inhibitory) input XA. When zero-mean 
noise is added to this quantity, in the pres- 
ence as well as in the absence of the signal, 
the unit's net input in each case is distribut- 
ed around x, or XA, respectively (Fig. 1A). 

A Network Model of Catecholamine Effects: Gain, 
Signal-to-Noise Ratio, and Behavior 

At the level of individual neurons, catecholamine release increases the responsivity of 
cells to excitatory and inhibitory inputs. A model of catecholamine effects in a network 
of neural-like elements is presented, which shows that (i) changes in the responsivity of 
individual elements do not affect their ability to detect a signal and ignore noise but (ii) 
the same changes in cell responsivity in a network of such elements do improve the 
signal detection performance of the network as a whole. The second result is used in a 
computer simulation based on principles of parallel distributed processing to account 
for the effect of central nervous system stimulants on the signal detection performance 
of human subjects. 

THE CATECHOLAMINES NOREPINEPH-
rine and dopamine are neuroactive 
substances that are presumed to 

modulate information processing in the 
brain rather than to convey discrete sensory 
or motor signals. Release of norepinephrine 
and dopamine occurs over wide areas of the 
central nervous system (CNS), and the post- 
synaptic effects of the release of these cate- 
cholamines are long-lasting (1). One impor- 
tant effect consists of an enhancement of the 
response of target cells to other afferent 
inputs, inhibitory as well as excitatory [(Z); 
reviewed in (41 .  

Increases or decreases in catecholaminer- 
gic tone have many behavioral conse-
quences, including effects on motivated be- 
haviors, attention, learning, memory, and 
motor behavior. At the information process- 
ing level, catecholamines appear to affect the 
ability to detect a signal when it is embed- 
ded in noise [reviewed in ( 4 ) ] .However, 
there is no adequate account of how these 
changes at the system level relate to the 
effect of catecholamines on individual cells. 
Several investigators (5-8) have suggested 
that catecholamine-mediated increases in a 
cell's responsivity can be interpreted as a 
change in the cell's signal-to-noise ratio 
(SNR). By analogy, they proposed that this . . 
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change at the unit level may account for 
changes in signal detection performance at 
the behavioral level. We explore here the 
relation between these two levels, using 
mathematical and computational models of 
individual neurons and networks of neu-
rons. 

We assume that the response of a typical 
neuron can be described by a strictly increas- 
ing function fc(x) from real-valued inputs 
to the interval (0, l).;This function relates 
the strength of a neuron's net afferent input 
x to its probability of firing or activation. 
We do not require that fc be differentiable 
or even continuous. We call fc the activa- 
tion function. 

For instance, the family of logistics, given 

by 

has been proposed as a model of neural 
response fbnctions (9).The logistics are all 
strictly increasing, for all values of G > 0 
and all values of B. 

The potentiating effect of catecholamines 
on responsivity can be modeled as a change 
in the shape of the activation function. In 
the case of the logistic, this is achieved by 
increasing the value of the gain parameter 
G, as illustrated in Fig. 1B. AS ~ increases ,  
the value fc(x) comes arbitrarily close to 1if 
x > 0 and a;bitrarily close to 0 if < 0 (10). 

Consider the detecti0n perform-
ance of a network in which the response of a 
single unit is compared with a threshold to ~ l ~ ~ i ~ ~ ~ 
determine the presence or absence of a 

We that in the presence ofthe 
signal this unit receives a positive (excitato- 
ry) net afferent xs and in the absence 
of the signal it receives a null or negative 

Therefore, its response is distributed around 
fc(x,) or fG(xA), respectively. 

In other words, the input in the case 
where the signal is present is a random 
variable Xs, with probability density fbnc- 
tion (PDF) pxs, and in the absence of the 
signal it is the random variable XA, with 
PDF pxA. These inputs then determine the 
random variables YeS = fc(Xs) and 
YGA = f c ( X ~ ) ,  with PDFs P Y ~ ,  and PY,,, 
which represent the response in the presence 
or absence of the signal for a given value of 
G (Fig: 1C). 

If the input PDFs pxs and pxA overlap, the 
output PDFs p and p yGA will also overlap. 
Thus, for any given threshold 0 on the y axis 

x (Net input) 

A 

0.0 
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

x (Net input) 

y (Activation) 

Fig. 1. (A) Example of the probability density 
function (PDF) of the net input in the cases of 
signal absent (pxA) and signal present (pXs)  (B) 
The logistic function at two values of gain G. This 
function has been proposed as a model of neural 
responsivity. The unit's activation at zero net 
input corresponds to a neuron's baseline firing 
rate. Positive net inputs correspond to excitatory 
stimuli, negative net inputs correspond to inhibi- 
tory stimuli. For the graphs drawn here, we set 
the bias B to -1.The negative bias renders the 
function asymmetric around a net input of 0.This 
asymmetry is often found in the response function 
of actual neurons (22).Increasing G drives up a 
unit's response to a positive input and drives 
down its response to a negative input. (C) Exam-
ples of the PDFs of the activation value of a unit 
in the presence (p  yGs) and in the absence (p  YGA) of 
the signal. These are the PDFs of the transformed 
RVs, YGS =f~(Xs) ,y d  EachYGA = ~ G ( X A )
PDF is drawn for two different values of G, in the 
case where fG is the logistic. 
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used to categorize the output as "signal 
present" or "signal absent," there will be 
some misses and some false alarms. The best 
the svstem can do is to select a threshold that 
optimizes performance. More precisely, the 
expected payoff or performance of the unit is 
given by 

where A, a, and w are constants that togeth- 
er reflect the prior probability of the signal 
and the payoffs associated with correct de- 
tections (also called hits), correct ignores, 
false alarms, and misses. Note that 
Pr(YGs 2 8) and Pr(YGA 2 0) are the prob- 
abilities of a hit and a false alarm, respective- 
ly. By solving the equation dEld0 = 0, we 
can determine a threshold, 8*, that maxi- 
mizes E. We call O* the optimal threshold. 

Fro? examination of Fig. 1, it might be 
supposed that, by changing the activation 
function, one can improve signal detection 
performance. But this is not so. For any 
activation function f that satisfies our as-
sumptions and any fixed input PDFs pxs and 
pxA, the unit's performance at optimal 
threshold is the same. This is our constant 
optimal performance theorem (COPT); it is 
stated and proved in (11). In particular, for 
the logistic, increasing the gain G does not 
induce better performance. It may change 
the value of the threshold that yields optimal 
performance, but it does not change the 
actual performance at optimum. This is be- 
cause a strictly increasing activation function 
gives a one-to-one mapping from input to 
output values. This makes it possible to 
express Eq. 2 exclusively in terms of the 
input PDFs pxs and pxA, and a ,  w, and A. 
Because it is the overlap between pxS and 
pxA that limits performance, and because 
this overlap does not vary with the gain, the 
performance at optimal threshold is con-
stant. 

We now examine the effect of changing 
the gain on the SNR of the output of a 
single unit. In electrical engineering, the 
SNR measures the difficulty of extracting a 
continuous-time signal s(t) from a noisy 
background n(t). The SNR compares the 
average power input to the receiver in the 
presence of the signal, Y = ([s(t) + n(t)I2), 
with the average power input in the absence 
of the signal, SIT = (n(t)') (12). If s(t) is a 
small perturbation added to n(t), then 
Y .=: X, and the signal will be difficult to 
detect. On the other hand, if the signal 
amplitude is high and the noise amplitude is 
low. then Y >> X. Thus. the ratio Y/N 
measures how difficult it is to distinguish 
signal from noise. 

In the case of a single unit, if the unit's 
input is x, its output is y =fG(x). Because 

Input unit Responseunit 

Fig. 2. A chain of units. The output of the unit 
receiving the signal is combined with noise to 
provide input to a second unit called the response 
unit. The activation of the response unit is com- 
pared with a threshold to determine the presence 
or absence of the signal. 

this quantity represents the firing rate of the 
neuron for a given stimulus presentation, if 
each neural sdike contains the same amount 
of energy, the power the neuron delivers 
will be proportional to y. Thus, over many 
stimulus presentations, the average power 
delivered in the presence of signal is propor- 
tional to p(YGS), the mean of YGS, and in 
the absence of signal is proportional to 
p(YGA). Hence, the ratio of the average 
power delivered in the presence of the signal 
to the average power delivered in the ab- 
sence of the signal, that is, the SNR, is 
~ ( Y G S ) / P ( ~ G A ) .  

In general, raising G will drive up p(kks) 
and drive down p(YGA), increasing the 
SNR of a single unit. Yet by the COPT, the 
performance of the unit at optimal threshold 
remains the same, because the effect of an 
increase of G on pyQ and py4 is not captured 
by the mean alone: ~ncreases in G will in 
general alter the shapes of these PDFs, 
possibly driving apart the main concentra- 
tions of probability mass but simultaneously 
extending their tails (Fig. 1C). The errone- 
ous intuition that separating the means will 
improve performance arises from the as-
sumptionthat the effect of an increase in G 
is to translate the output PDFs rigidly away 
from one another. For this reason, it is 
misleading to explain the performance ef- 
fects of catechol&ines sole6 in terms of the 
SNR. 

Although increasing G does not affect the 
signal detection performance of a single 
element, it does improve the performance of 
a chain of such elements. By a chain, we 
mean an arrangement in which the output of 
the first unit provides the input to &other 
unit. Let us call this second element the 
response unit. We monitor the output of 
this second unit to determine the 
or absence of a signal (Fig. 2). 

As in the previous discussion, noise is 
added to the net input of each unit in the 
chain in the presence as well as in the 
absence of a signal (13). We represent noise 
as a random variable (RV) V, with PDF pv 
that we assume to be independent of gain. 
Let the RVs Xs, XA, YGS, YGA, and their 
PDFs all be defined as in the single-unit 
case. Now, because noise is added to the net 
input of the response unit as well, the input 

of the response unit is the RV ZGS = YGS+ 
V or ZGA = YGA+ V, again depending on 
whether the signal is present or absent. We 
write pzGs and pz, for the PDFs of these 
RVs. Then pzGS is the convolution of pyGs 
and pv, and pz, is the convolution of pyGA 
and pv. Convolving the output PDFs of the 
input unit with the noise distribution in- 
creases the overlap between the resulting 
distributions (pzGs and pZ,) and therefore 
decreases the discriminability of the input to 
the response unit. 

How are these distributions affected by an 
increase in G on the input unit? By the 
COPT, we already know that the discrimi- 
nability of YGS and YGA is unchanged. 
Furthermore, we have assumed that the 
noise distribution is independent of G. It 
would therefore seem that a change in G 
should not affect the discriminability of ZGS 
and ZGA. However, under very general con- 
ditions, the overlap between pzGs and pzGA 
decreases when the G of the input unit 
increases, thereby improving performance 
of the two-layered system. We call this the 
chain effect. 

The chain effect arises because the noise 
added to the net input of the response unit is 
not affected by variations in G. Increasing G 
separates the means of the output PDFs of 
the input unit, p(YGS) and p(YGA), even 
though this does not affect the performance 
of this unit. Suppose all the probability mass 
were concentrated at these means. Then pzGs 
would be a copy of pv centered at p(YGS), 
and pzGA would be a copy of pv centered at 
p(YGS). Thus, in this case, increasing G 
would rigidly translate pzGs and ~ z ,  apart, 
thereby reducing their overlap and improv- 
ing performance. A similar effect arises in 
more general circumstances, when YGS and 
YGA are not concentrated at their means. 
The chain performance theorem, stated and 
proved in ( I I ) ,  gives sufficient conditions 
for the appearance of this effect. 

The above analysis has shown that in- 
creasing the G of the activation function of 
individual units in a very simple network can 
improve signal detection performance. We 
now present computer simulation results 
showing that this phenomenon can account 
for catecholamine-induced performance im- 
provements in a common behavioral test of 
signal detection. 

The continuous performance test (CPT) 
(14) has been used extensively to study 
attention and vigilance in behavioral and 
clinical research. In this task, individual let- 
ters are displayed tachystoscopically in a 
sequence on a computer monitor. In one 
common version of the task, a target event is 
to be reported when two consecutive letters 
are identical. Performance on this task has 
been shown to be sensitive to drugs or 
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pathological conditions affecting catechol- 
m i n e  systems (15-17). During baseline per- 
formance, subjects typically fail to report 10 
to 20% of targets ("misses") and inappropri- 
ately report a target during 0.5 to 1% of the 
remaining events ("false alarms"). After the 
administration of agents that directly release 
catecholamines from synaptic terminals and 
block re-uptake from the synaptic cleft 
(CNS stimulants such as amphetamines or 
methylphenidate), the number of misses de- 
creases while the number of false alarms 
remains approximately the same. Using 
standard measures of signal detection the- 
ory, investigators have shown that this pat- 
tern of results reflects an improvement in the 
discrimination between signal and nonsignal 
events (d'), whereas the response criterion 
(p) does not vary significantly (16, 17). 

We used the backpropagation learning 
algorithm (18) to train a recurrent network 
of three layers (input layer, intermediate or 
hidden layer, and output layer) to perform 
the CPT (see Fig. 3A). In this model, several 
simplifying assumptions made in the preced- 
ing section are removed. First, the network 
contains recurrent connections. Second, 
connection weights are developed entirely 
by the training procedure; as a result, the 
activation patterns on the intermediate layer 
that are evoked by the presence or absence 
of a signal are also determined solely by the 
training procedure. Finally, the representa- 
tion of the signal is distributed over an 

Fig. 3. Simulation of the continuous performance 
task. (A) Diagram of recurrent three-layer net- 
work (12 input units, 30 intermediate units, 10 
output units, and 1 response unit). Each unit 
projects to all units in the subsequent layer. In 
addition, each output unit also projects to each 
unit in the intermediate layer. Letters are present- 
ed to the network as patterns of activation over 
the input units, which act as feature detectors. 
During training, the network learns to activate 
the output unit corresponding to the letter being 
presented on the input. In addtion, the recurrent 
connections provide the network with the pattern 
of activation evoked on the output layer by the 
presentation of the previous letter. The network 
learns to activate the response unit when two 
consecutive letters are identical and to turn it off 
in all other cases. The activation of a unit in the 
intermediate or output layer depends on the 
activations of all units in the layers providing 
input to it. Each input is weighted by the corre- 
sponding connection strength, which can be posi- 
tive or negative. The sum of the weighted inputs 
is then passed through the logistic function to 
determine the unit's activation. The gain pararne- 
ter G is the same for all intermediate and output 
units. In the simulation of the placebo condition, 
G = 1.0: in the simulation of the drug condition. 
G = 1.1: Bias B is -1 in both conuditions. (B) 
Performance of human subjects and of the simula- 

ensemble of units rather than determined by 
a single unit. 

After training, Gaussian noise with zero 
mean was added to the net input of each 
unit in the intermediate and output layers as 
each letter was presented. The overall stan- 
dard deviation of the noise distribution and 
the threshold of the response unit were 
adjusted to approximate the performance of 
human subjects under baseline conditions 
[human subjects: 11.7% misses and 0.6% 
false alarms (16); simulation: 13.0% misses 
and 0.75% false alarms]. We then increased 
the G of all the intermediate and output 
units from 1.0 to 1.1 to simulate the effect of 
catecholamine release in the network. This 
manipulation resulted in rates of 6.6% 
misses and 0.78% false alarms [human sub- 
jects: 5.5% misses and 0.5% false alarms 
with methylphenidate (16); see Fig. 3B]. 

The enhancement of signal detection per- 
formance in the simulation is a robust effect. 
I t  appears when G is increased in the inter- 
mediate layer only, in the letter units only, 
or in both. Because of the recurrent connec- 
tions between the letter units and the inter- 
mediate layer, the chain effect appears when 
G is increased over either or both of them. 
The impact of the chain effect is to reduce 
the distortion, due to internal noise, of the 
distributed representation on the layer re- 
ceiving inputs from the layer where G is 
increased. The improvement takes place 
even when there is no noise added to the 
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input of the response unit. The response 
unit in this network acts only as an indi- 
cator of the strength of the signal in the 
intermediate layer. Finally, as the COPT 
predicts: increasing G only on the response 
unit does not affect the performance of the 
network. 

In this simulation, as well as in the preced- 
ing discussion, increasing G appears to have 
only the beneficial effect of making it easier 
to distinguish between the presence and 
absence of a signal. Nevertheless, it is possi- 
ble to speculate about drawbacks of higher 
G values in a biological system. First, at 
lower G, the presence of noise guarantees 
some variability in response selection. High- 
er G may induce stereotyped responses. 
Variability of responses may be a necessary 
and adaptive feature of biological systems, 
paiticularly in the context of new environ- 
ments and during learning. 

Second, we have seen that increasing G 
reduces the effect of noise in a multilayer 
network. However, under some circum-
stances, what we have regard+ as noise may 
be the expression of a weak signal that is 
competing with a stronger signal for trans- 
mission. In some situations, this weak signal 
may undergo progressive enhancement in 
subsequent layers of the network and ulti- 
mately be an important determinant of the 
system's response. With high values of G, 
the representation of this weaker signal 
would be eliminated early in processing, in 
favor of the stronger signal. 

Finally, although operating at a high G 
improves signal detection performance, it 
may be energetically draining. Cortical neu- 
rons appear to operate at high G in states of 
wakefulness and arousal and at low G dur- 
ing sleep (19), and autoradiography studies 
suggest a correlation between catecholamine 
release and increased deoxyglucose metabo- 
lism (20). These observations are not sur- 
prising. The communication channels in the 
brain, like all communication pathways, 
have finite bandwidths, determined by their 
physical characteristics. The information ca- 
pacity of such channels, operating in the 
presence of noise, is a function of the power 
emitted into them to transmit a signal (21). 
Hence, sending information over these 
channels at the rates associated with wakeful 
or alert behavior (that is, at higher G) 
requires higher power consumption or an 
increased rate of energy expenditure. 
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The C, Cluster: Structure and Infrared Frequencies 

Observation and characterization of the C7 cluster are reported. Carbon clusters are 
produced by laser vaporization of a graphite target followed by supersonic expansion 
of the vaporized material within a gas dynamically focused argon jet. Thirty-six 
sequential rovibrational lines of the v4 antisymmetric stretch fundamental of C7 are 
probed by gated detection of  diode laser absorption. The observed spectrum is 
characteristic of a symmetrical linear molecule. Analysis of the spectrum indicates an 
effective average bond length of 1.2736(4)angstroms and a vibrational frequency of 
2138.1951(10)reciprocal centimeters, in excellent agreement with ab initio calcula- 
tions. This work will facilitate the astrophysical detection of this cluster. 

SMALL CARBON CLUSTERS (LESSTHAN 

12 atoms) have recently attracted the 
attention of numerous investigators 

from a wide variety of disciplines. This is 
largely due to the ubiquitous nature of these 
species; they have been'observed in astro- 
physical sources (I), in sooting flames (2), in 
acetylene photolysis (3, 4), and in plasmas 
produced by laser vaporization of graphite 
(5-7). This suggests that unsaturated carbon 
clusters play a critical, if not central, role in 
the high-temperature chemistry of carbon- 
rich environments. 

Ab initio and semiempirical theory of 
small carbon clusters has been under con- 
stant development for several decades (8, 9). 
Much of this work has recently been re-
viewed by Weluler and Van Zee (10). Odd- 
numbered clusters of up to 11 atoms are 
expected to have linear '2 ground states, 
with the lowest triplet states existing at 
much higher energy. Even-numbered clus- 
ters of up to 10 atoms are predicted to have 
two low-energy configurations: an open 
shell linear 38state and a monocyclic singlet 
state. There is much debate regarding the 
detailed properties of these even clusters 
(10). odd-numbered clusters up to C; are 
predicted to be more stable than the adja- 
cent even clusters (9). 

Despite this high level of theoretical activ- 
ity, experimental results have been sparse. 
The development of tandem mass spectro- 
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metric technologies has enabled researchers 
to study carbon cluster cation photofrag- 
mentation (6) and anion photoelectron 
spectroscopy (7). Results from these experi- 
ments have been consistent with theory. 
Only recently, however, have definitive ex- 
periments capable of testing detailed theo- 
retical predictions been possible. Over the 
past 2 years a number of research groups 
have characterized the C3 cluster with high- 
precision laser techniques and have obtained 
sufficient information for the construction 
of an accurate molecular potential surface (3, 
12-14). Last year we acc&~~lished a detailed 
laboratory characterization of the C5 cluster 
(5) using infrared laser spectroscopy. That 
experiment was reported simultaneously 
with the detection of C5 in the carbon star 
IRC+10216 by Bernath, Hinkle, and 
Keady (1). Additional bands of C5 have 
been detected and analyzed by Moazzen- 
Ahmadi, McKellar, and Amano (4, 15). Ab 
initio calculations are in close agreement 
with those experimental results. -

In this paper we describe direct observa- 
tion and characterization of the C7 cluster, 
carried out with an infrared laser spectrosco- 
py technique similar to that used in our 
study of C5. Thirty-six sequential rovibra- 
tional lines have been measured and as-
signed to the v4 antisymmetric stretch vibra- 
tional transition of C7. The observed spec- 
trum is characteristic of a symmetrical linear 
molecule with a closed electronic shell. Anal- 
ysis the spectrumindicates a ground state 
rotational constant of 0.030929(21) cm-', 
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