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Autoradiographic Imaging of Phosphoinositide 
Turnover in the Brain 

With [3H]cytidine as a precursor, phosphoinositide turnover can be localized in brain 
slices by selective autoradiography of the product [3H]cytidine diphosphate diacylgly- 
cerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits 
an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. 
In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation 
increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimu- 
lation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are 
restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain 
slices, which are amenable to electrophysiologic studies, will pennit a dynamic 
localized analysis of regulation of this second messenger in response to synaptic 
stimulation of specific neuronal pathways. 

T HE PHOSPHOINOSITIDE (PI) SEC- 
ond messenger system mediates nu- 
merous neurotransmitter effects in 

the brain, which, with some exceptions, 
have not been readily assigned to specific 
cellular sites (1). Localization of neurotrans- 
mitter synaptic responses in the brain has 
been explored by autoradiographic mapping 
of receptor binding sites, but these sites 
sometimes do not reflect known synaptic 
input (2). Imaging functional, second mes- 
senger responses to neurotransmitters at 
specific loci in the brain has been difficult to 
accomplish with immunohistochemical 
mapping of endogenous adenosine 3',5'- 
monophosphate (CAMP) and guanosine 
3',5'-monophosphate (cGMP) (3); no lo- 
calizations of PI responsivity have been at- 
tempted. 

Phosphoinositide turnover in tissue slices 
is usually assessed biochemically by labeling 
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phospholipid precursors with [3~]inositol  
and monitoring the generation of [3~] inos i -  
to1 phosphates in response to neurotrans- 
mitter agonists, a procedure that is not 
compatible with anatomical localization be- 
cause of the solubility of the products (4). 
Godfrey (5) has measured PI turnover in 
brain slices with [3~]cytidine as a precur- 
sor. In this technique, the generation of 
[3~]cytidine diphosphate diacylglycerol 
( [ 3 ~ ] ~ ~ ~ - ~ ~ ~ )  reflects PI turnover rate. 
Since CDP-DAG is membrane-bound, we 
attempted to localize [3H]CDP-DAG by 
autoradiography, rinsing away water-solu- 
ble metabolites and removing [3H]cytidine- 
containing nucleic acids by enzymatic diges- 
tion. By using [3~]cytidine as a precursor, 
we produced selective autoradiographic im- 
ages of PI turnover, identifying discrete 
localizations of PI turnover within the hip- 
pocampus and cerebellum that were elicited 
differentially by muscarinic cholinergic and 
glutamatergic stimulation. 

Godfrey (5) found similar enhancement 
of PI turnover in cerebral cortical slices with 
either [3H]inositol or [3~]cytidine as pre- 
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Tabk 1. (A) Comparison of phosphoiiositide turnover measured with (400 pm thick), identical to those used fw autoradiography in Figs. 1 and 2, 
[3~]inositol or [3~]cytidine in hippocampal and cerebellar slices (6). The were prepared from rat brain (6). AU numbers are expressed as ratios 2 SEM 
data shown are representative of three experiments performed in mplicate. of counts pcr minute in each condition to Li+ alone. Carb, carbachol; n, 
(B) Comparison of [3H]CDP-DAG accumulation in hippocampal and number of experiments. 
cerebellar slices. Transverse hippocampal slices or sagittal cerebellar slices. 

[3H]CDP-DAG accumulation [3H]Inositol 
phosphates [3H]CDP-DAG accumulation Ti 

(min) 
Tissue 

No Li+ Garb Li+ + Li+ Li+ + 
addition Carb Carb Carb ACPD 

- 

A 15 0.820.1 1.020.1 0.920.1 4.720.3 1.020.2 6.820.8 BHippocampus 7 .922.5(n=6) 3.6+1.7(n=3) 
60 0.820.2 1.020.1 0.820.1 8.221.6 1.020.1 9.422.1 Cerebellum 2.7+1.3(n=3) 7.7+2.7(n=6) 

cursors. In rat hippocampal slices, the same 
increase of PI turnover was elicited by the 
cholinergic stimulant carbachol with either 
[3~]cytidine or [3H]inositol as precursors 
(6) (Table 1A). No augmentation of PI 
turnover occurred in the absence of lithium 
or carbachol. In the presence of both lithium 
and carbachol, the extent of PI turnover 
stimulation at 15 and 60 min was similar 
with [3~]cytidine and [3H]inositol. Half- 
maximal enhancement of [3H]CDP-DAG 
hrmation occurs with 100 pA4 carbachol, a 
value similar to that seen when PI turnover 
is monitored with [3H]inositol (7). The PI 
response to carbachol appears to involve M1 
or M4 muscarinic receptors, as it is com- 
pletely blocked by the muscarinic antagonist 
pirenzipine [inhibitory constant (ICm), 100 
nM]. Neomycin, which blocks PI turnover 
by binding phosphatidylinositol bisphos- 
phate, inhibits PI turnover monitored with 
['H]inositol or [3~]cytidine with an almost 
identical concentration response curve and 
an ICm of about 0.5 to 0.7 mM. The 
carbachol-induced augmentation of hippo- 
campal PI turnover was about twice the 
corresponding increase in the cerebral cortex 
(5). 

Within the hippoampus, PI turnover 
monitored with [3H]cytidine is also i n d  
by tram- 1-amino- 1,3-cydopentanedicarbox- 
ylic acid (ACPD), a derivative of glutamate 
that, like quisqualate (quis), sdectivdy stimu- 
lates glutamatergic synapses associated with 
PI turnover, which are designated quis-PI 
responses (8). ACPD stimulation of PI tum- 
over was only about half that observed with 
carbachol (Table 1B). To ensure that PI 
responses to ACPD invoke the quis-PI recep 
tor, we included in incubations with ACPD 
2-amino-5-phosphonovaleric acid (APV), a 
drug that selectively blocks the N-methyl-D- 
asparcate (NMDA) ionotropic glutamate re- 
ceptors, and 6-cyano-2,3-dihydroxy-7-nitro- 
quhoxahe (CNQX), which selectively 
blocks the ionotropic quis and kainate sub- 
types of the glutamate receptor. PI nunover 
augmentation by ACPD was the same in the 
presence or absence of APV and CNQX. By 
contrast, ACPD enhancement of PI turnover 
was blocked by 2-amino-3-phosphonopro- 

Fig. 1. of ACPD- 
[ HICDP-DAG 

accumulation in rat cere- 
bellar slices (10). The ef- 
fect of 5 mM LiCi alone 
imaged by (A) autoradio- 
graphic film ( ~ 2 0 )  and by 
emulsioncoated aver slip 
autoradiography under (8) 
light-field and (C) dark- 
field (X400). (D, E, and 
F) The effect of LiCl plus 
100 p M  ACPD. ML, - 
lrmlar layer; PC, Purkinje 
cell and Purkinje cell layer; 
and GCL, granule cell lay- 
er. Experiments were re- 
peatcd'a minimum of five times with similar results. 

pionic acid (AP3) (1% 0.5 mM), consistent 
with its known pormcy in blocking glutama- 
tergic quis-PI mpoIBe!s (9). Whereas carba- 
chol enhanced PI turnover more than ACPD 
in the hippocampus, the pattern is reversed in 
the cerebellum. Cerebellar ACPD stimulation 
of PI turnover was about twice that in the 
hippocampus, while stimulation by cubachol 
was only about 25% of that in hippocampus. 
To identify the radiolabeled product in PI 
tumovh experhmts with [3H]cytidine, we 
conducted thin-layer chromatographic (TLC) 
analysis ofthe organic extmcts and observed a 
s q l e  peak of radioactivity identical to the 
migration of authentic CDP-DAG (6). 

For autoradiographic studies, we incubat- 
ed brain slices with [3~]cytidine for 1 hour 
hbwed  by treatment with lithium in the 
presence or absence of neurotransmitters 
and drugs. T i u e  slices were embedded and 
cut in 16-@ frozen d o n s .  In a permeabi- 
lizing buffer conmining saponin, the sec- 
tions were treated with deoxyribonuclease 
and ribonudease to destroy nudeic acids 
that may have incorporated [3H]cytidine. 
The d o n s  were exposed to film or photo- 
graphic emulsion, and autoradiographic 
grains were monitored. Only [3H]CDP- 
DAG remained in the treated sections, as 
TLC analysis of the nuclease-treated d o n s  
revealed a single radioactive peak corre- 
sponding to authentic CDP-DAG ( 10). Ad- 
dition of exogenous myo-inositol (20 mM) 
reversed the accumulation of [3H]CDP- 

DAG, as monitored by both TLC and auto- 
radiography, providing h the r  evidence 
that the incorporated cytidine reflects the PI 
cycle (6)- 

Autoradiographic analysis revealed an en- 
hancement of PI turnover elicited by ACPD 
in the cerebellum (Fig. 1) and by both 
carbachol and ACPD in the hippocampus 
(Fig. 2). In the cerebellum only negligible 
amounts of CDP-DAG-associated silver 
grains are observed in the absence of ACPD, 
whereas grain density is markedly increased 
&er ACPD treatment. Grains are localized 
to the molecular and Purkinje cell layers 
with negligible densities over the granule 
cell layer or white matter. Carbachol (1 
mM) did not augment grain density com- 
pared with lithium controls. Since APV and 
CNQX were included in all incubations, 
ACPD stimulation probably involves the 
quis-PI receptor system. 

In the hippocampus, carbachol increased 
grain density as compared to the neghgible 
amounts in lithium conaols (Fig. 2). Grain 
density was similar in the subiculum, CAI, 
CA3, and CA4 and was diminished at the 
borders between CA1 and CA3 and be- 
tween CA3 and CA4. Grains were most 
concentrated over the pyramidal cell layer 
with an extension at a somewhat lesser 
density in the subjacent dentritic field of 
pyramidal cells. The grain pattern in the 
pyramidal cell layer was not unifbtm, but 
mis t ed  of discrete patches. The patch-like 
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Fig. 2 Autoradiographic imaging of r3H]CDP-DAG accumulation in rat hippocampal slices in the 
presence of 5 mM LiCl alone (A and B), LiCl plus 1 mM cacbachd (C and D), or LiCl plus 100 )LM 
ACPD (E and F), viewed under light-field and dark-field microscopy (x50). P d m  used were 
identical to those in Fig. 1. DG, dentate gyrus and S, subicular area. Arrows indicate CA3-CA1 and 
CAl-subicular area borders. Experiments were repeated a minimum of three times with similar results. 

appearance was apparent in all the pyramidal 
a l l  layers, but was more prominent in CA3. 
Grain densities wcrc su&tially lower in 
the granule cell layer and the molecular layer 
of the dentate gyrus. 

ACPD stimulation eliated a markedly 
different pattem than carbachol, with dense 
grain accumulations in the subicular area 
and in CA3 and negligible densities in CAl 
and CA4, the areas most stimulated by 
carbachol. ACPD-elicited grains displayed 
sharp borders between CA3 and CA1 and 
between the subicular area and CAI. The 
border was maintained both in the pyrami- 
dal layer and in the subjacent area of pyrami- 
dal cell dendrites. Negligible grain densities 
occurred in the dentate gyrus in ACPD- 
treated d o n s .  

In the cerebellum, the localization of 
ACPD-stimulated turnover in Purkinje ceh 
and their dendrites fits with abundant evi- 
dence that the major PI-associated pathway 
involves the quis-PI synaptic responses of 
hukinje cells to glutamate released from 
parallel fibers of the granule cells. In the 
hippocampus, the localization of carbachol- 
stimulated PI turnover to the subiculum, 
CAI, CA2, CA3, and CA4 pyramidal cell 
layers is consistent with the cholinecgic neu- 
ronal input to these areas refkcted in cholin- 
esterase staining and muscarinic cholinergic 
receptor autoradiography (1 1 ) . We observed 
much lower densities of carbachol-stimulat- 
ed PI nunover in the dentate gyrus than in 
the pyramidal cell layer. Of M l  and M4, the 
two muscarinic receptor subtypes linked to 
the PI system, mRNA associated with M1 
receptors is concentrated in the dentate gy- 
rus as well as the pyramidal cell layer, where- 
as M4 concentrations are substantially lower 
in the dentate gyrus (12). This localization 
suggests that the PI responses to carbachol 
we have seen reflect a greater influence of 
M4 receptors than M1 receptors. 

Our visualization of ACPD-enhanced PI 
turnover localizes the glutamatecgic PI sys- 
tem in the hippocampus to CA3, and sheds 
light on issues that have not been resolved in 
immunohistochemical studies of glutamate 
(13) and autoradiography of glutamate re- 
ceptors (14). Long-tenn potentiation (LTP) 
in CA1 ofthe hippocampus utilizes NMDA 
receptors (15), whereas the pertussis toxin- 
sensitive. NMDA-resistant LTP of CA3 

involves quis-PI glutamatecgic 
synapses. This distinction fits with the high 
density of ACPD-stimulated PI nunover in 
CA3 but not CA1 regions. 

The patch-like arrangement of autoradio- 
graphic grains in the pyramidal cell layer of 
thehipp&mPus canriot be explained by the 
disposition of pyramidal ceh or their synap- 
tic inputs. A patch-like pattern of the com- 
missural pathways connecting pyramidal cell 
lay& of the two hemispheres may deter- 
mine the patchy pattern of PI nunover. This 
element of synaptic responsivity would not 
be apparent &k~ of n k n a l  input 
or receptor binding sites. 

Imaging PI responses to neurotransmit- 
ters at a microscopic level may help darifl 
the nature of synaptic interactions. The slice 
preparations we used are identical to those 
utilized for electrophysiologic analysis, per- 
mitting studies of difkrentially localized PI 
response to discrete n m n a l  inputs. Al- 
though we have focused on the hippocam- 
vus and cerebellum and iduences ofcholin- 
ecgic and glutamatergic stimulation, our 
technique can be applied to numerous brain 
regions and peripheral tissues in response to 
n e u m d t t e k ,  hormones, &gs, and 
physiologic and pathologic stimuli. 
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