
ease, experinlental autoimmune encephalo- 
myelitis (Z), in T cells in demyelinating 
plaques from brains of patients with multi- 
ple sclerosis (3), and on T cells along the 
body's surface like skin, the tongue, and 
vagina (14). A recent study indicates oligo- 
clonality of TCR expression in bulk cultures 
of TILs analyzed by Southern (DNA) blots 
(15). Also sohe alloreactive and virus-specif- 
ic cytotoxic T cells use restricted TCR genes 
(16). Our data indicate that TILs may have a 
restricted TCR repertoire. If the TILs ex- 
pressing V,7 are involved in an antitumor 
response, specific culture of such cells could 
be advantageous in tumor therapy. More- 
over, the technology should be useful for 
analysis of TILs within other types of solid 
tumor. 
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Regional Variation of Extracellular Space in the 
Hippocampus 

The factors responsible for the unusual susceptibility of  the hippocampus to seizures 
and ischemic cell damage are not well understood. The CA1 pyramidal subfield of the 
hippocampus is part i~ar ly  vulnerable to seizure activity anxdamage after ischemia. 
The possibility was examined that regional differences exist in extracellular volume, 
which might influence neuronal excitability and response to injury in the hippocam- 
pus. CAl stratum pyramidale exhibited an exceptionally low extracellular volume 
fiaction (EVF) of 0.12, whereas the EVFs of CA3 and dentate were considerably 
higher-0.18 and 0.15, respectively. The EVF of CAl stratum pyramidale was 
reversibly reduced by 30 percent when the extracellular potassium concentration was 
raised from 3.5 to 8.5 rnM, a procedure that induced spontaneous electrographic 
seizures in CAl. Thus there are regional variations in the properties of the extracellular 
space in the hippocampus that might underlie the of the CA1 region to 
develop seizuresand t i  suffer damage after ischemia. 

T HE '~RACELLULAR VOLUME FRAC- surements of EVF and tortuosity (9) within 
tion and tortuous diffusion pathways the various layers of the hippocampal slice 
set fundamental constraints on the under both physiological and pathological 

movement of ions and other substances conditions. We calculated the volume frac- 
within the interstices of the mammalian 
brain (1). Most estimates of EVF, made 
with a variety of techniques in several spe- 
cies and brain regions, fall within a narrow 
range of 0.17 to 0.22 (1,Z). Conditions that 
result in shrinkage or expansion of extracel- 
lular space have long been suspected of 
influencing neuronal activity (3-5). For ex- 
ample, shrinkage of extracellular space 
could, if large enough, enhance neuronal 
synchronization as a result of stronger elec- 
tric field interactions and by a volume effect 
amplify the transient elevations in the extra- 
cellular potassium concentration ([K'],) 
and transmitter concentrations that develop 
during neuronal activity (4, 6-8). The aim of 
this study was to make quantitative mea- 

Depamnent o f  Pharmacology, University o f  North Car- 
olina at Chapel Hill, Chapel Hill, NC 27599. 

*Present address: University College London, Gower 
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tion and tortuosity of extracellular space in 
rat hippocampal slices (10) by the method of 
Nicholson and Phillips (1). Briefly, an ion- 
selective electrode was used to measure in 
real time the diffusion profile of an ionto- 
phoretically applied ion, tetramethylam- 
moniurn (TMA'), that is restricted to the 
extracellular compartment (Fig. 1A). The 
time-dependent rise and fall of the extracel- 
lular concentration of TMA+ (Fig. 1B) is 
then fitted to a radial difision equation 
modified to account for EVF and tortuosity 
(11). The movement of TMA' within all 
regions of the hippocampus that we tested 
was well fit by the d i h i o n  equation, irre- 
spective of iontophoretic current intensity 
(Fig. 1B) or electrode spacing (12). Both 
EVF and tortuosity showed considerable 
regional variation (Table 1). The EVF of 
CA3 stratum pyramidale (0.18) was within 
the usual range (1, 2), but EVF of CA1 st. 
pyramidale (0.12) was 33% smaller (Fig. 1C 
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and Table 1). The values of EVF in the 
other regions ranged between these values 
(13, 14). The tortuosity was also significant- 
ly different between CA1 and CA3. These 
results indicate that extracellular space in the 
CA1 region, especially in st. pyramidale, is 
very restricted. 

Intraventricular injection of K+ sutticient 
to raise [K+], to between 5.4 and 8.1 mM 
induces hippocampal seizures in cats (15). 
Similarly, hippocampal slices bathed in 8.5 
mM [K'], undergo intense electrographic 
seizures that arise in and are restricted to the 
CA1 region. Such seizures are readily 
blocked by osmotic expansion of the extra- 
cellular space (7). Much larger increases in 
[K'],, for example, those accompanying 
spreading depression (5) or seizures (4), are 
buffered by glial cells, which results in subse- 
quent water movement into surrounding 
cells and thus a reduction of the EVF (4). It 
is undear, however, whether a significant 
reduction in EVF would result from a rise in 
[K'], in the absence of intense neuronal 
firing. We tested this hypothesis directly by 
generating TMA+ diffusion curves in hippo- 
carnpal slices as [K'], was raised from 3.5 
to 8.5 mM (Fig. 2). In high [K+],, EVF 
was reduced in st. pyramidale of both CA1 
(30.3 + 5.0% decline) and CA3 (29.9 + 
5.4% decline) with no significant change in 
tormosity (Fig. 2, A and B, and Table 2). 

- 
Dentate 

0 40 80 120 

Time (s) 

Table 1. Regional variation in extracellular space. Values are the mean + SEM 

Region EVF Tormosity n 

CA1 st. pyramidale 0.119 + 0.018" 1.67 ? 0.03" 45 
CA1 st. radatum 0.132 2 0.025" 1.71 2 0.04' 30 
CA3 st. pyramidale 0.177 2 0.028 1.83 2 0.04 41 
CA3 st. radatum 0.155 2 0.028 1.71 2 0.04' 3 1 
st, granulosum 0.148 + 0.030 1.80 ? 0.07 25 

*The F-ratio obtained from ANOVA was significant, post hoc tests used a multiple comparison analysis against CA3 
st. pyramidale and were considered significantly different at P < 0.05. 

Table 2. Elevated K+ restricts extracellular space in CA1 and CA3 st. pyramidale. Values are the 
mean 2 SEM. 

K+ concentration EVF Tormosity n 

CAI st. pyramidale 
3.5 mM 0.131 ? 0.035 1.65 ? 0.05 15 
8.5 mM 0.088 + 0.024' 1.69 2 0.05 15 
3.5 mM (recovery) 0.120 2 0.033 1.81 2 0.07 14 

CA3 st .  pyramidale 
3.5 mM 0.187 + 0.063 1.96 2 0.09 10 
8.5 mM 0.132 2 0.044" 2.01 + 0.10 10 
3.5 mM (recovery) 0.200 + 0.073 1.94 2 0.09 9 

*P < 0.05, t test compared with both control and recovery. 

Our findings have two implications for 
hippocampal physiology. First, the combi- 
nation of an already low EVF and the 
observed marked response to an elevation in 
[K+], can help explain the vulnerability of 
the CA1 region to cell damage after ische- 
mia or hypoxia, which cause a rise in [K+], 

Fig. 1. Regional variation in EVF. (A) The 
electrode array and recording sites (solid dots) 
within the hippocampal slice. Iontophoretic and 
sensing electrodes were positioned parallel to the 
cell layer at a depth of 150 pm. The five dots 
show the recording positions in each subregion. 
Baseline extracellular TMA+ concentration rose 
during the + 20-nA steady bias current and three 
priming iontophoretic pulses (50-s TMA+ ejec- 
tion every 5 to 6 min) to stabilize at 0.3 to 1.5 
mM (11). (8) Sample diffusion profiles at three 
iontophoretic current intensities in CA1 st. pyra- 
midale. TMA+ potentials were converted into 
concentrations by the Nikolsky equation (11) and 
analyzed with an iterative program that used a 
simplex algorithm. The calculated values for EVF 
(a) and tortuosity (A)  were independent of cur- 
rent density, which implies that the electrode 
transport number was stable throughout the ex- 
periment. Electrode spacing (range, 66 to 150 
pm) in agar did not influence the calculated 
transport number. (C) Comparison of TMA+ 
diffusion in agar and in st. pyramidale of 
CA1 and CA3. Dots represent measured extracel- 
lular TMA+ concentration, whereas the solid lines 
show theoretical curves based on the mean param- 
eters from three trials. The steeper rise and the 
larger increase for the curve obtained in CA1 
indicate a smaller volume fraction in this area. The 
lower trace illustrates the diffusion profile of 
TMA+ in agar. Each curve was computed (11) 
with the specific parameters: D, 1.11 x lo-' cmZ 
s-'; H, 0.253; I, 130 nA; and r, 90 pm; the values 
of a and X shown on the figure. 

(5 ,  16), and the development of epileptic 
seizures (7, 17, 18). Indeed, the relative 
susceptibility of the three hippocampal sub- 
regions to develop interictal bursts (CA1 
> dentate > CA3) in the absence of synap- 
tic transmission (6) is inversely related to 
their EVF (Table 1). Shrinkage of extracel- 
lular space during mild hypoxia would cause 
(i) a rise in the interstitial concentrations of 
transmitters such as glutamate and glycine, 
and thus could lead to larger tonic activation 
of N-methyl-D-aspartate (NMDA) receptors 
(19); (ii) enhanced [K+], transients during 
cell firing, which would promote a regenera- 
tive increase in neuronal excitability (20); 
and (iii) greater synchronization of neurons 
by electric fields (6, 21) as tissue resistance 
rises (7, 22). 

The second, perhaps more general, impli- 
cation is that extracellular space is not a fixed 
fraction of total tissue volume, but varies 
significantly among the hippocampal sub- 
fields. In contrast, the EVF of the rat cere- 
bellar cortex appears homogeneous (1, 23, 
24). The basis of the observed inhomogen- 
eity in this fundamental property of the 
hippocampus is not obvious, although dif- 
ferences in packing density among the re- 
gions examined do not seem responsible 
(12). Possible explanations would involve 
reduced distance between cellular mem- 
branes in CA1 st. pyramidale, additional 
diffusion barriers associated with the extra- 
cellular matrix in this region, or, if one 
assumes a fixed intercellular distance (-30 
nm), an increased mean size of those objects 
(cell bodies, processes) that make up this 
region (25). It is not known whether region- 
al inhomogeneity in EVF occurs elsewhere 
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Fig. 2. Elevated extracellular K+ reduces EVF in 
st. pyramidale of both CA1 and CA3. (A) Com­
parison of TMA+ diffusion profiles in 3.5 and 
8.5 mM [K+]0 demonstrates a 34% reduction in 
volume fraction within st. pyramidale of CA1 
(from 0.121 to 0.079) with less effect on tortuos­
ity (1.5 in 3.5 mM and 1.7 in 8.5 mM [K+]0). 
Diffusion parameters were J, 160 nA; r, 80 |xm; «, 
0.353; and D, 1.13 x 1(T5 cm2 s_1. (B) In a 
different slice, EVF in st. pyramidale of CA3 was 
reduced by 33% (from 0.159 to 0.107) in 8.5 
mM [K+]0, again without a significant change in 
tortuosity (1.9 in 3.5 mM, 2.0 in 8.5 mM [K+]0). 
The superimposed smooth curves in (A) and (B) 
are theoretical diffusion curves calculated from the 
specific parameters obtained in each experiment. 
Diffusion parameters were r, 80 |xm; «, 0.263; D, 
1.10 x 1(T5 cm2 s_1; and /, 80 nA. (C) Elevated 
[K+]0 has no significant effect on TMA+ diffu­
sion profile or electrode transport number 
[n = 0.288 in 3.5 mM [K+]0 (solid line); 
n = 0.277 in 8.5 mM [K+]0 (dotted line)] in agar 
slices. Both diffusion curves (solid and dotted 
lines) were obtained from a single agar block 
where all parameters were held constant with the 
exception of [K+]0. I, 160 nA; r, 88 |xm; and D, 
1.20 x 10-5cm2s-1 . 

in the brain. A very low EVF would predis­
pose a brain region to synchronous firing via 
enhancement of electric field excitation (4, 
6). In addition, regional inhomogeneity and 
dynamic changes in the EVF would affect 
the distribution of all released chemicals 
over both spatial and temporal domains of 
the local microenvironment and could there­
by modulate neural integration of synaptic 
signals. 
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Expression of T Cell Antigen Receptor 
Heterodimers in a Lipid-Linked Form 

The interaction of the T cell receptor for antigen (TCR) with its antigen-major 
histocompatibility complex ligand is diflicult to  study because both are cell surface 
multimers. The TCR consists of two chains (or and P) that are complexed to the five or 
more nonpolymorphic CD3 polypeptides. A soluble form of the TCR was engineered 
by replacing the carboy1 termini of ol and f3 with signal sequences &om lipid-linked 
proteins, making them susceptible to  enzymatic cleavage. In this manner, TCR 
heterodimers can be expressed independenyy of the CD3 polypeptides and in 
significant quantities (0.5 milligram per week). This technique seems generalizable to  
biochemical and structural studies of many other cell surface molecules as well. 

T HE ANTIGEN-SPECIFIC IMMUNE RE- sponses of vertebrates are deter- 
mined by B and T lymphocytes. B 

cell specificity is due to immunoglobulin 
molecules that can be either expressed on 
the cell surface or secreted. Extensive infor- 
mation has been obtained regarding the 
biochemistry and structure of irnmunoglob- 
dins and their interactions with various 
antigens (1, 2). In contrast, little is known 
about the structure of TCR heterodimers or 
their interaction with their putative ligands, 
antigen fragments embedded in molecules 
of the major histocompatibility complex 
(MHC) (3). This is in part because the TCR 
is not secreted, and it is not expressed on the 
surface of T cells in large amounts 
[-20,000 to 40,000 molecules per cell (4)]. 
The complexity of the TCR ligand and its 
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normal cell surface expression has also 
contributed to the difficulties in trying to 
characterize the mode of interaction. In 
addition, although the TCR polypeptides 
are immunoglobulin-like (5) ,  they are al- 
ways co-expressed with CD3 molecules 
( 6 ) ,  which leaves open the possibility that 
they require those molecules for their sta- 
bility. To better understand TCR-mediat- 
ed recognition, we and others have unsuc- 
cesshlly tried to engineer TCR a and P 
polypeptides, or variable (V) regions de- 
rived from them, as antibody chimeras (7) 
or truncated 'molecules (8), to allow the 
expression of a soluble form in biochemi- 
cally significant quantities. 

The COOH-terminal 37 amino acids of 
decay-accelerating factor (DM)  can serve as 
a signal sequence for the attachment of an 
otherwise secreted protein to the cell surface 
by means of a phosphotidyl inositol (PI)- 
glycan linkage (9), which can be cleaved off 
the surface of transfected cells by the specific 
enzyme, phosphatidyl inositol-specific 
.phospholipase C (PI-PLC) (1 0). Expression 
of a recombinant TCR heterodimer an- 
chored by a PI-glycan linkage would pro- 
vide: (i) a PI-PLC-cleavable, soluble form 
without a need for detergents; (ii) TCR 

surface expression that is not limited by the 
amount of CD3 (11); and (iii) a lipid- 
linkage that should keep the TCR polypep- 
tides in the correct orientation with respect 
to each other and at a relatively high concen- 
tration (in the plane of the interior mem- 
brane), thus maximizing the chances of cor- 
rect association. 

The T helper hybridoma 2B4 (12, 13) 
bears an cxp TCR that recognizes a fragment 
of pigeon cytochrome c plus the class I1 
MHC molecule, I - E ~  (14). We replaced the 
transmembrane and cytoplasmic domains of 
both chains with either the signal sequence 
from a monomeric protein, DAF (8), or 
with COOH-termini derived from human 
placental alkaline phosphatase (HPAP) (1 5),  
a PI-linked dimer. Because the sequences 
required for HPAP to direct PI-linkage have 
not been defined, we designed two HPAP 
signals of different lengths that contained 
either the last 38 (HPAP-S) or the last 47 
amino acids (HPAP-L) of the protein (Fig. 
1A). By analogy with immunoglobulin Fab 
fragments, all three PI-anchoring signal se- 
quences were joined to the TCR chains at 
the fifth residue COOH-terminal of the last 
conserved cysteine. The modified a and P 
cDNAs were then inserted into the mamma- 
lian expression vector pBJ1-Neo (16). Stain- 
ing of COS cell transfectants with monoclo- 
nal antibodies specific for the a [A2B4.2, 
(13)] and the p [KJ25, anti-Vp3 (17)] TCR 
chains revealed the presence of both on the 
cell surface. Ninety percent of the TCR 
molecules could be cleaved from the mem- 
brane after treatment of the cells with PI- 
PLC from Bacillus thuringiensis (lo), thus all 
the COOH-termini used here could serve as 
signal sequences for this type of linkage. The 
same constructs were then introduced into 
Chinese hamster ovary (CHO) cells, and 
stable transfectants resistant to the antibiot- 
ic, G418, were selected. 

In order to determine the stability of 
expression of the PI-anchored TCR on the 
cell surface, the brightest 5% cxp-staining 
cells of each pool of CHO transfectants 
(apDAF, apHPAP-S, and cxpHPAP-L) 
were pooled after fluorescence-activated cell 
sorting. The same procedure was repeated 
on the sorted cells after 2 weeks of culture. 
The staining profiles obtained (Fig. 1B) 
after the second sorting of each CHO trans- 
fectant pool were obtained with subsaturat- 
ing amounts of the antibody to V,, A2B4.2, 
so that it would not block the binding of 
the antibody to Vp3, KJ25 [(18) and be- 
low]. At this point, apHPAP-S cells were a 
homogeneous population of bright double- 
positive cells, whereas both the a p D M  and 
aPHPAP-L cells contained significant num- 
bers of dully staining cells (Fig. 1B). This 
suggests that the HPAP sequences, especial- 
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