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Two G Protein Oncogenes in Human 
Endocrine Tumors 

Somatic mutations in a subset of growth hormone (GH)-secreting pituitary tumors 
convert the gene for the a polypeptide chain (a,) of G, into a putative oncogene, 
termedgsp. These mutations, which activate a ,  by inhibiting its guanosine triphospha- 
tase (GTPase) activity, are found in codons for either of two amino acids, each of which 
is completely conserved in all known G protein a chains. The likelihood that similar 
mutations would activate other G proteins prompted a survey of human tumors for 
mutations that replace either of these two amino acids in other G protein a chain 
genes. The first gene so far tested, which encodes the a chain of Giz, showed mutations 
that replaced arginine-179 with either cysteine or histidine in 3 of 11 tumors of the 
adrenal cortex and 3 of 10 endocrine tumors of the ovary. The mutant a i 2  gene is a 
putative oncogene, referred to as gip2. In addition, gsp mutations were found m 18 of 
42 GH-secreting pituitary tumors and in, an autonomously functioning thyroid 
adenoma. These findings suggest that human tumors may harbor oncogenic mutations 
in various G protein a chain genes. 

M ANY PROTO-ONCOGENES EN- 

code proteins that transmit sig- 
nals that regulate normal cell 

growth. Specific mutations convert these 
genes into oncogenes, whose mutant pro- 
tein products are responsible for the abnor- 
mal growth of malignant cells. In many 
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human tumors, for example, point muta- 
tions convert ras genes into oncogenes (1). 
These mutations render p21mS oncogenic 
by inhibiting its ability to hydrolyze bound 
guanosine triphosphate (GTP), thus trap- 
ping the protein in its active, GTP-bound 
state (1). We reported (2) functionally simi- 
lar GTPase inhibiting mutations that acti- 
vate the a chain (a,) of a heterotrimeric G 
protein, G,, in human growth hormone 
(GH)-secreting pituitary tumors; the muta- 
tions convert the a, gene into a putative 
oncogene, termed' gsp (2). 

These findings, combined with conserved 
stretches of amino acid sequence in a large 
number of G protein a chains, suggested a 
novel approach for finding oncogenes. Here 
we report success of this approach in its first 
application, to the gene encoding the a 
chain (ai2) of Gi2. 

This approach is based on two inferences 

regarding structure and function of G pro- 
teins. First, we infer that the two conserved 
amino acids whose mutational replacements 
inhibit GTPase of a, have similar functional 
roles in a chains of other G proteins. This 
inference in turn implies that cognate muta- 
tions in other a chains will activate the 
corresponding G proteins. One set of gsp 
mutations (2) substitutes arginine for ~ l n ~ ~ ~  
of a,, which is equivalent to Gln6' of p2lrUS, 
a frequent site of GTPase-inhibiting muta- 
tions in the ras proteins. Othergsp mutations 
(2) replace kg2'' of a, with cysteine or 
histidine. This arginine is the target for 
cholera toxin-catalyzed adenosine diphos- 
phate (ADP)-ribosylation of a, and the a 
chain of retinal transducin, a covalent modi- 
fication that inhibits GTPase activity of both 
proteins (3). The amino acid sequence in 
regions surrounding both these codons (Ta- 
ble 1) is conserved from unicellular eukary- 
otes to mammals, further supporting the 
inference that the two amino acids play 
conserved GTPase-catalyzing roles in all G 
proteins. 

The second inference is that a chains of 
other G proteins, like a,, are protooncogene 
proteins-that is, that they mediate signal- 
ing pathways coupling external stimuli to 
stimulation of proliferation. This inference 
is based on evidence that certain hormones 
and neurotransmitters promote prolifera- 
tion via receptors that interact with G pro- 
teins and thereby trigger signaling pathways 
that promote proliferation, including activa- 
tion of phospholipases C and A2 (4). 

This second inference dictates a broad- 
based search for a chain mutations, because 
current information does not point to spe- 
cific cells or tissues in which a specific G 
protein (other than G,) is known to mediate 
a proliferative stimulus. This contrasts with 
the initial search for gsp mutations, which 
was prompted by abnormally elevated ade- 
nylyl cyclase activity and GH secretion in a 
subset of GH-secreting pituitary tumors (5 ) .  
In normal pituitary somatotrophs, G, cou- 
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ples the receptor for GH-releasing hormone 
(GHRI-I) to stimulation of adenylyl cyclase, 
cyclic AMP (aden0~ine-3',5'-monophos- 
phates) production, GH secretion, and cell 
proliferation (6). Thus in the case ofgsp, the 
cell type, the G protein, and the normal 
proliferative signals were known before the 
oncogenic mutations were discovered. 

~o~verselv. identification of tumors car- , , 
rying oncogenic mutations in other a chains 
point to specific types of normal cells in 
which a  articular G orotein mediates a 

L 

signaling pathway leading to proliferation. 
We therefore initiated a program aimed at 
identifying presumptive GTPase-inhibiting 
mutations in genes for a chains of the three 
known Gi proteins, as well as G, Gz (7), 
and four other a chains identified from 
cDNAs (8). Because mutations in each gene 
must be sought in a large number of differ- 
ent human tumors, we surveyed tumors for 
one a chain eene at a ti& and used a 
strategy bas~d" on previous searches for 
point mutations in ras genes (9). The polym- 
erase chain reastion (PCR) (10) was used to 
amplifjr a spedc  region of genomic DNA, 
and allele-specific oligonucleotides were hy- 
bridized at'high &gency to detect po& 
mutations in the amplified product (Fig. 1). 
Allele-specific hybridization can detect point 
mutations onlv iri'samoles in which substan- 
tial expansion of a mutant clone has oc- 
curred. Because dona1 expansion relative to 
normal cells is a clear indication of neoplas- 
tic behavior, this method is particularly well 
suited for detection of mutant genes that are 
responsible for abnormal proliferation. 

We chose the a chain of Gi2 (ai2) as the 
first target of this d g  procedure be- 
cause the coding sequence and intron be- 
tween the two codons to be tested, that for 

and that for GIU~'' (Table l) ,  is short 
enough (1 1) to allow PCR amplification of a 
single genomic DNA fragment containing 
both d o n s .  For each tumor, a single PCR 
reaction was therefore used to generate sub- 
strate for hybridization with allele-specific 
oligonucleotides. We analyzed genomic 
DNA from 258 human tumors. 

Mutations in the ArgIm codon of q z  were 
detected in three different endocrine tumor 
p i n  3 of 11 tumors of the adrenal 
cortex and 3 of 10 endocrine tumors of the 
ovary (2 granulosa tumors and 1 thecoma) 
(Table 2). No mutations were found in the 
Gln205 codon. The high frequency of muta- 
tions in the codon in tumors ofthese 
two cell types suggms that the mutations 
converted the q z  gene into an oncogene, 
referred to as gip2 (for Gi protein-2). Ac- 
cording to this interpretation, muta- 
tions would activate q 2  by inhibiting its 
GTPase activity; this implication has not yet 
been tested. 

The amino acid residues that replaced 
in q z  (Table l)--cysteine and histi- 

dine-were the same as those that replaced 
the cognate w' in gsp oncogene products 
found in pituitary tumors (2). Of the six 
possible misscnsc mutations that can d t  
from single-base changes in these codons of 
a, and ai2, these mutant proteins may be 
more biologically active. It may also be 
sign16cant that both cysteine and histidine 
mutations are the d t  of G to A transi- 
tions, suggesting that a preferred mecha- 
nism of DNA mutation might contribute to 
the predominance of these two substitu- 
tions. 

In one tumor of the adrenal cortex, we did 
not detect a normal allele of a i2  (Fig. 1A). 
Sequence analysis of PCR products revealed 
a sin e sequence, corresponding to the 
ArgJ'murnion (Fig. 1B). lhir suggs  
that the normal allele is absent. because of a 
deletion event or gene conversion. Loss of 
the normal allele might imply that its pro- 
tein product interferes with the oncogenic 
effect of the mutant protein, so that hilure 
to express normal q 2  confers an additional 
selective advantage on cells carryihg an acti- 
vating an mutation in the other allele (12). 

Fig. 1. Point mutations in PCR-amplified DNA 
encoding ail (A and B) and a, (C). (A) Autora- 
diograms of dot blots of DNA ampMed from 
eight human adrenocortical tumors (kft) and 
eight ovarian granulosa cell tumors (right), 
probed with each of three d i k t  allele-specific 
oligonudeotidcs d&mg at codon R179 (33); 
these include wild type (two upper rows), R179C 
(two middle rows), and R179H (C, Cys; H, His, 
and R, Arg) (two lower rows). The adrenal tumor 
lacking a wild-type dele was an a d e n d m a ;  
the other two adrenal tumors with R179 muta- 
tions were adenomas. (8) Autoradiograms of gels 
produced by sequencing the noncodmg strands of 
cq2 DNA amplified from t h m  different samples. 
Each gel shows the noncoding sequence for c e  
don R179, in which the arrow (left) points to  the 

We also sought gsp mutations in human 
tumors, both to determine their fkquency 
in GH-secreting tumors of the pituitary and 
to explore the possibility that constitutive 
activation of a, may contribute to oncogen- 
esis in other cell types where cyclic AMP 
may act as a mitogen. A region of the a, 
gene including d o n s  201 and 227 and an 
intervening intron (13) was amplified from 
tumor genomic DNA. We analyzed geno- 
mic DNA fiom more than 300 tumors. 

Mutations in the a, gene were detected 
only in GH-secming tumors of the pituitary 
gland and in a single thyroid tumor (Table 
2). Among 42 GH-seueting pituitary tu- 
mors, 18 (43 percent) contained a, muta- 
tions. Ofthese, 16 mutations were in codon 
201 (14 arginine to cysteine, 2 arginine to 
histidine) and 2 were in d o n  227 (both 
glutamine to arginine). In addition, of 36 
thyroid tumors tested, one contained a point 
mutation in a, codon 227 (glutamine to 
histidine); the positive tumor was one of 
four autonomously functioning adenomas 
(socalled hot nodules) t d .  

We looked for a, mutations in white 
blood cells of two patients whose pituitary 
tumors contained a, point mutations, and in 

Adrenal Ovarlan 
A samples samples 

6 GATC GATC GATC 
5 -  m -  F-- 

third base of this codon (reading 5' to 3' from 
bottom to top). Sampk I shows the noncoding R201 C 
wild-type sequence for the R179 codon (GCG, 
reading 5' to 3', bottom to top); this sample was 
obtained from histologically nonnal tissue adja- R201 H 
cent to the adrenocortical adenoma used to pro- 
vide the quence shown in sample II. Sample 11 
shows both A and G in the position of the third 
base,thusconfirmingthepresenceofbothArg 

Q227R 

(wild type) and Cys ( m & g  sequence GCA) 
alleles at codon for residue at 179, as the dot blot 
had indicated. The sequence from sampk III confirms the conclusion obtained from a dot blot of DNA 
from an admmmkd carcinoma (see above): that is, the presence of a R179C dele (noncoding 
sequence GCA) without a correspdmg wild-type d e k  (no G in the position corresponding to the 
third base). (C) Autondiognms of dot blots of a, DNA from 16 biochemically characterized human 
GH-smcting pituitary tumors probed with each of four di&rent dek-speufic oligonucleotides (wild 
type, or R201; R201C, R201H, or Q227R) (Q, Gln) (32). Group I tumors had low basal adenylyl 
cyclase activity that responded normally to stimulatory agents; group 11 tumors had marked elevation of 
basal adenylyl cydase activity that responded poorly to s t i m b r y  agents (5). A region containing the 
indicated codons of the a, or % gene was amplified by PCR (10) from genomic DNA isolated from 
either fresh b tissue (9) or paraf6ncmbedded tissue (32). Point mutations were detected with high- 
stringency hybridization of allele-specific oligonudeotidcs to the amplified product (10,33). The DNA 
sequence was obtained by direct sequencing of the PCR product (1 1). 
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normal thyroid tissue surrounding the thy- 
roid nodule that contained an a, mutation. 
None of these samples contained a mutant 
a, gene, whether assessed by sequencing 
cDNA clones (2) or by allele-specific oligo- 
nucleotide analysis. These results indicate 
that the mutations are somatic, and thus are 
likely to have played a direct causal role in 
development of the tumors. Furthermore, a 
normal a, allele was present in all tumors 
where a mutant allele was detected, suggest- 
ing that mutations that activate G, are domi- 
nant. 

Of the 42 GH-secreting pituitary tumors 
studied, 16 were biochemically character- 
ized on the basis of adenylyl cyclase activity. 
Eight tumors showing elevated adenylyl cy- 
clase were predicted to harbor an activated 
a,; each of these tumors contained a muta- 
tion in codon 201 or codon 227 (Fig. 1C). 
No mutations were detected in eight tumors " 
that showed normal adenylyl cyclase activi- 
ty. Although a, mutations in other codons 
may also inhibit GTPase, the strong concor- 
dance between elevated adenylyl cyclase ac- 
tivity and a mutation in codon 201 or codon 
227 indicates that activating mutations at 
other sites are relatively infrequent. 

Thyrotropin (TSH) requires cyclic AMP 
as a second messenger to stimulate prolifera- 
tion of thyroid cells (14). Thus, the a, 
mutation found in a thyroid tumor (Table 
2) conforms with the possibility that gsp 
mutations would be found not only in tu- 
mors derived from pituitary somatotrophs, 
but also in tumors from other cell types in 
which cyclic AMP acts as a mitogen. No gsp 
mutations, however, were found in 16 mela- 
nomas, six ovarian granulosa cell tumors and 
nine tumors of the adrenal cortex, despite 
the ability of cyclic AMP and hormones that 
activate adenylyl cyclase to stimulate prolif- 
eration of melanocytes (14), and (under 
certain circumstances) of steroid-producing 
endocrine cells (15). 

The restricted distribution ofgsp and gip2 
oncogenes among specific endocrine target 
cells raises several questions. Why do we 
find gip2, but not gsp, mutations in tumors 
of the adrenal cortex and ovarian granulosa 

arrest of adrenal cortical cells in primary 
cultures derived from bovine adrenals (16). 
Similarly, although lutropin (LH) utilizes 
G, and cyclic AMP to promote secretion of 
sex steroids from ovarian granulosa cells, it 
inhibits proliferation of these cells in culture 
(17). Taken together, these results suggest 
that ACTH and L H  do not utilize G, and 
cyclic AMP to stimulate proliferation of 
their respective target cells; consequently 
tumors derived from these cells should not 
harbor the gsp oncogene (Table 2). 

Gi proteins inhibit adenylyl cyclase (18), 
mediate muscarinic regulation of K+ chan- 
nels (19), and have been implicated in sever- 
al pathways that promote cell proliferation. 
For example, pertussis toxin treaunent- 
which uncouples Gi proteins from interact- 
ing with receptors (20)-blocks mitogenic 
effects of lysophosphatides and serotonin 
(21). However, no direct evidence specifical- 
ly implicates Giz or any other Gi protein as a 
regulator of proliferation in any specific cell 
type or tumor. 

Table 1. Conservation of sequences among G protein a chains. Stretches of a, sequence surrounding 
the ArgZO' and GIu*~' codons are highly conserved in G protein a chains of vertebrates, yeast, and slime 
mold. Sequences include rat a,, ai l ,  ai2,  ai3, and a,, and human a, (7), a, of bovine retinal rod cells 
(29), the a chain of the G protein (called GPAl or SCG1) that mediates pheromone signaling in 
Snrchnvotnyces revevisine (30), and an a chain ( G a l )  from Dictyostelium discoideutw (31). Abbreviations for 
the amino acid residues are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, 
Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 

201 
a s  D L  L R C  R V L  T S(205)  
mi I - V - - T  - - K - T  (182) 
a i 2  - V - - T  - - K -  T (183) 
'3-13 - V - - T  - - K  - T (182) 
a o  - I - - T  - - K  - T (183) 
a z  - I -- S - D M -  T (183) 
at - V - - S  - - K  - T (177) 
GPAllSCG1 - I - K G - I K - T (301) 
G a  1 - V  -- S. - T K - T (184) 

227 
F D  V G G Q R D  E R R ( 2 3 2 )  
- - - - - - - S - - K (209) 
- - - - - - - S - - K (210) 
- - - - - - - S - - K (209) 
- - - - - - - S - - K (210) 
V - - ---- S - - K (210) 
- - - - - - - S - - K (205) 
L - A - - - - S  - - K  (328) 
V ------ S - - K  (211) 

Table 2. Summary of human tumors screened for mutations in codons 179 and 205 for a,2 and codons 
201 and 227 for a,. DNA for PCR amplification (10) was isolated from either fresh tissue (9) or 
paraffin-embedded tissue (32). Three ovarian sex cord stromal tumors (two granulosa cell tumors, one 
thecoma) and three adrenal cortical tumors (two adenomas and one carcinoma) contained a mutation in 
ai2 codon 179. Eighteen GH-secreting pituitary adenomas contained a mutation in a, codons 201 or 
227. 

Tumor type 
'3.12 a s  

Tested Mutation Tested Mutation 

Pituitary adenoma 
G H  
Prolactin 
TSH 
ACTH 
Nonsecretor 

Ovarian sex cord stromal tumors* 
Adrenal cortical tumor? 
Thyroid tumor* 
Melanoma 
Glioblastoma - 

cells, even though peptide hormones capa- Ovarian ~dmocarchoma 10 0 
ble of stimulating adenylyl cyclase can under Gastric adenocarcinOma 14 0 

Renal cell carcinoma 17 
certain circumstances promote proliferation B,,,,, adenocarcinoma 

0 
25 0 

of the cells from which these tumors arose? Bladder transitional cell carcinoma 9 0 
Do these t ro~h ic  hormones exert their ~ r o -  Pancreatic adenocarcinoma 12 0 
liferative effects via aiz? Do other hormones 
promote proliferation of these cells via aiz? 

Data on the proliferative behavior of cul- 
tured cells from adrenal cortex or ovarian 
granulosa cells do not yet provide firm 
answers. Thus, corticotropin (ACTH) stim- 
ulates cortisol secretion via G,, adenylyl 
cyclase, and cyclic AMP; nonetheless, 
ACTH and cyclic AMP analogs induce G I  

Acute myelogenous leukemia 8 0 
Squamous cell carcinoma 33 0 3 3 0 
Colonic adenocarcinoma 20 0 0 
Hepatoma 12 0 15 0 
Prostatic tumors 12 0 12 0 
Total 258 309 

*Granulosa cell tumors (seven), thecomas (two), and androblastoma (one). tAdenoma (five for a,, and five for 
a,?); carcinoma (four for a, and six for a,?). *Papillary carcinoma, four; fohcular carcinoma, four; follicular 
adenoma, two; Hiirthle cell carcinoma (three for a ,  and one for a;); Hiirthle cell adenoma (six for a, and none for a,);  
multinodular goiter, four; autonomously functioning nodules (four for a, and none for a,); and undifferentiated 
carcinoma, one. §Benign hyperplasia, six; adenocarcinoma, six. 
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The possibility that one or more physio- 
logically relevant mitogens for adrenal corti- 
cal or ovarian granulosa cells does act via a i 2  

is consistent with available evidence. Angio- 
tensin and fibroblast growth factor (FGF) 
stimulate thymidine incorporation and cell 
division of adrenal cortical cells in primary 
culture (16, 22). Of these, angiotensin ap- 
pears more likely to act via ai2, because 
many of its effects are mediated by G pro- 
teins (23). This possibility can be easily 
tested: ~nhibit ion of hormone action bv 
pertussis toxin depends on the toxin's ability 
to ADP-ribosylate a chains of Gi proteins, 
including a i 2  (18,20); if angiotensin's prolif- 
erative action on adrenal cortical cells is 
mediated by ai2, it should be blocked by 
pertussis toxin. Proliferation of ovarian 
granulosa cells is stimulated by FGF and 
epidermal growth factor (EGF) (24). Al- 
though most mitogenic effects of FGF (25) 
and EGF (26) are mediated by receptor 
tyrosine kinases rather than by G proteins, 
pertussis toxin has been found in a few 
instances to block nonmitogenic effects of 
both hormones (27), suggesting the possible 
existence of G protein-linked receptors for 
these growth factors-receptors that might 
deliver a proliferative signal not mediated by 
phosphorylation of tyrosine residues. 

Abundant evidence indicates that ACTH, 
LH, and TSH can trigger the generation of 
second messengers other than cyclic AMP, 
including products of the Ca2+-phospho- 
inositide cascade (28). By the same token, 
these and other cyclic AMP-elevating hor- 
mones could stimulate cell proliferation by 
Gi2 or another G protein distinct from G, 
(and, probably, via a different receptor as 
well). Such a second pathway could mediate 
the proliferation of adrenal cortical cells that 
follows prolonged elevation of ACTH in 
vivo ( 15). 

Although the gip2 and gsp mutations raise 
many questions, they also provide clear sign- 
posts for exploring the diverse mix of signal- 
ing pathways that mediate regulation of 
proliferation and differentiated function in 
endocrine target cells. The occurrence ofgsp 
and gip2 mutations in a restricted subset of 
human tumors follows a pattern rather dif- 
ferent from that of several well-established 
oncogenes, such as vas and myc, that are 
found in various tumors. This difference 
presumably reflects the fact that G proteins 
usually mediate hormonal regulation of cell 
functions other than ~roliferation. Other a 
chain genes may be subject to oncogenic 
mutation. Each such mutation would pre- 
sumably appear in rumors derived from a 
specific subset of cells, presumably those in 
which the corresponding normal G protein 
participates in a signaling pathway that pro- 
motes proliferation. 
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Metalloantibodies 
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A metailoantibody has been constructed with a coordination site for metals in the 
antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used 
as a model. Three histidine residues have been placed in the light chain complementar
ity determining regions of a single chain antibody molecule. In contrast to the native 
protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This 
response was interpreted as evidence for metal binding in the three-histidine site with 
relative affinities in the order Cu(II) > Zn(II) > Cd(II). The presence of metal 
cofactors in immunoglobulins should facilitate antibody catalysis of redox and 
hydrolytic reactions. 

CATALYTIC ANTIBODIES HAVE NOW 

been induced with haptens that are 
designed to use a number of differ

ent strategies for effecting catalysis [for re
views, see (1, 2)]. Distortion, charge stabili
zation, and proximity have all been used to 
advantage. Antibody side chains in the bind
ing pocket can participate directly in some 
of the reactions. Binding sites modified co-
valently and by site-directed mutagenesis 
have also yielded increases in catalytic rate. 
Finally, metal complexes have been enlisted 
to effect catalysis of simultaneously bound 
substrates for specific hydrolysis of the pep
tide bond. 

The advent of facile systems for the re-
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Molecular Biology and Chemistry, The Research Insti
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combination and expression of the antibody 
repertoire in bacteriophage X allows consid
eration of a new approach for utilizing 
antibody-bound cofactors (3-6). In this sys
tem a cofactor binding light chain could be 
combined with a heavy chain library derived 
from the polymerase chain reaction (PCR) 
products of a mouse previously immunized 
with a substrate or substrate analog of inter
est. Ideally, significant binding of substrate 
can be maintained by the heavy chain (3, 4), 
and a few combinations will be produced in 
which the substrate is bound in a suitable 
position to facilitate reaction with the cofac
tor. In this approach the diversity of the 
antibody repertoire is used to enhance a 
catalytic design. Successful implementation 
of this strategy requires the production of 
antibodies that present cofactors in proximi
ty to bound antigen. We report the produc
tion of an antibody that simultaneously 
binds the reporter antigen fluorescein and 

directly coordinates metal ions such as 
Cu(II). 

The general design strategies for remodel
ing antibodies is the subject of a separate 
report (7). Briefly, for the work described 
here, a computer search was conducted on 
the known catalytic metal binding sites in 
metalloenzymes, and the backbone configu
rations around these sites were compared 
with those of the complementarity deter
mining regions (CDRs) in antibody light 
chains. A striking similarity was discovered 
between the antiparallel p-sheet structure 
around the three His ligand residues of the 
zinc binding site of carbonic anhydrase B (8) 
and the (3-sheet structure around residues 
34, 89, and 91 [numbering of Kabat et al. 
(9)], in CDRs LI and L3 of antibody light 
chains (Fig. 1, A and B). Substitution of 
these three antibody residues with His 
should form a binding site that resembles 
that of the natural metalloenzyme (Fig. IB) 
(10). Furthermore, a bound metal will be 
located deep in the groove of the binding 
site (see Fig. 1C) with the metal protruding 
slightly toward the heavy chain. This should 
make the vacant coordination site on the 
metal atom highly accessible to substrate. 
Since the p-sheet structure in this region is 
rigorously conserved among the antibodies 
of known structure (11, 12), our design 
should be generally applicable to antibody 
light chains. 

The single chain fluorescein binding mol
ecule (referred to here as native sequence 
protein) (13) with the 212 linker derived 
from the antibody 4-4-20 was chosen for 
our metal binding studies for several rea
sons. First, the three-dimensional structure 
of the parent antibody combining site with 
bound fluorescein is known (14). Second, 
the gene has been cloned into a highly 
efficient expression vector (13), which is 
readily amenable to site-directed mutagene
sis. Third, the six Trp residues in the mole
cule surround the new metal binding site, 
which suggests that bound metals such as 
Cu(II) would effectively quench Trp fluo
rescence (Fig. ID). Model building indicat
ed metal to nearest atom distances for five 
Trp residues of 5 to 10 A and for one Trp 
residue of 15 A. Finally, bound fluorescein 
was expected to be useful as a spectroscopic 
probe for locating bound metal in the prop
erly folded antibody combining site (Fig. 
ID). 

Histidine residues were introduced into 
LI at Arg34 and L3 at Ser89 and Ser91. Since 
Ser91 and Arg34 form hydrogen bonds to the 
bound fluorescein (14), the fluorescein bind
ing constant should be lower for the mutant 
protein, but should still be measurable be
cause of the high binding constant for the 
native sequence protein (13). Inspection of 
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