
Chaos Versus Noisy Periodicity: Alternative 
Hypotheses for Childhood Epidemics 

Whereas case rates for some childhood diseases (chicken- 
pox) often vary according to an almost regular annual 
cycle, the incidence of more efficiently transmitted infec- 
tions such as measles is more variable. Three hypotheses 
have..been proposed to account for such fluctuations. (i) 
Irregular dynamics result from random shocks to systems 
with stable equilibria. (ii) The intrinsic dynamics corre- 
spond to biennial cycles that are subject to stochastic 
forcing. (iii) Aperiodic fluctuations are intrinsic to the 
epidemiology. Comparison of real world data and epide- 
miological models suggests that measles epidemics are 
inherently chaotic. Conversely, the extent to which chick- 
enpox outbreaks approximate a yearly cycle depends in- 
versely on the population size. 

E SPECIALLY I N  THE PHYSICAL SCIENCES, THE UBIQUITY OF 

chaotic fluctuations is now well established (1). Fundamen- 
tally, chaos results from the action of nonlinear laws of 

motion. Because even very simple biological systems obey nonlinear 
equations, it should come as no surprise that there is also mounting 
evidence (2) for chaos in biology. 

Recently it has been proposed that, in the absence of vaccination, 
recurrent epidemics of measles, poliomyelitis, and possibly mumps 
and rubella are chaotic (3) .  An alternative view (4, 5) is that these 
outbreaks represent periodic behavior in the presence of random 
perturbations. In particular, it has been suggested that the deterrnin- 
istic component of measles infections corresponds to an alternating 
pattern of high and low years (5 ) .  

We review here the dynamics of measles and chickenpox, the two 
infections for which we have been able to gather the most informa- 
tion. In detail, we study monthly case reports from eight large North 
American and European cities and two small islands. To analyze the 
data, we use traditional methods of spectral analysis as well as more 
recently developed techniques from nonlinear dynamics. We hrther 
compare incidence patterns for the real world infections with a 
stmdard epidemiological model, the so-called "SEIRy' equations. 
The name is an acronym for Susceptible-Exposed-Infectious-Recov- 
ered, these being the categories into which the host population is 
divided. In particular, we consider the effects of seasonal variations 
in transmission and random perturbations. Our analyses suggest 
that, for large populations, temporal changes in chickenpox inci- 
dence are best explained as a noisy annual cycle. Conversely, 
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variations in the incidence of measles exhibit the field marks of 
chaos. Finally, we predict and find erratic dynamics for both diseases 
in the case of small populations. 

Case Reports for Chickenpox and Measles 
Figure 1 (small boxes at upper left) shows monthly case reports of 

chickenpox and measles in New York City and on the Danish island 
of Bornholm for periods of 11 to 43 years (6). New York has a 
population of several million, whereas the inhabitants of Bornholm 
number about 50,000. For New York, the chickenpox data suggest 
an annual cycle perturbed by noise; for Bornholm, the time series is 
more irregular. In the case of measles, the data suggest yearly 
outbreaks of varying amplitude (with an apparent high-low biennial 
cycle from 1944 on) in New York and a more highly erratic pattern 
on Bornholm. 

These conclusions are confirmed by the autocorrelation functions 
and power spectra, which are shown in the same figure (small boxes, 
lower left; main parts of each diagram). For chickenpox in New 
York, there is a single spectral peak corresponding to 1 cycle per year 
(cpy). In contrast, the Bornholm chickenpox data show peaks at 0.3 
and 1.0 cpy emerging out of a noisy background that accounts for 
most of the variation. Both sets of measles data show multiple peaks. 
For New York, the major peak corresponds to an annual oscillation, 
and there is a subsidiary peak at 0.41 cpy. For Bornholm, the 
dominant peak corresponds to a period of 4 years. 

Elsewhere (7-9) we have presented power spectra for other 
historical data sets: chickenpox in Copenhagen (Denmark), Milwau- 
kee, and St. Louis and measles in Aberdeen (Scotland), Baltimore, 
Copenhagen, Detroit, Milwaukee, and St. Louis. .In all cases, 
chickenpox exhibits a single spectral peak corresponding to the 
annual cycle. Measles epidemics are another matter. With the 
exception of the data for Aberdeen, each data set has two peaks: the 
first at 1.0 cpy, and the second in the region 0.34 to 0.46 cpy. 
Combining these results with the evidence in Fig. 1 suggests three 
conclusions. First, in large cities, outbreaks of measles epidemics are 
more irregular than outbreaks of chickenpox epidemics. Second, the 
overall patterns of both chickenpox and measles infections exhibit 
relatively little variation among large cities. Third, pronounced 
differences are observed when one compares large populations with 
small. These results accord with the writings of Anderson and May 
(lo), who stress that, of the two diseases, measles is the more easily 
transmitted. They are also in agreement with the work of Bartlett 
(II), who was among the first to suggest that population size and 
isolation are important factors in shaping patterns of infection. Note 
that there is an interaction between population size and transmission 
efficiency. Measles is more highly infectious and therefore more 
liable to "burn itself out" in small populations (12). 
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Epidemiological Models 

Here we compare real world epidemics with mathematical mod- 
els. Specifically, we study the SEIR equations (10, 13), which divide 
the host population into four categories. One assumes that individ- 
uals enter the population at birth as susceptibles (S) and exit by 
death or by emigration. A susceptible becomes exposed (E) by 
contact with one or more individuals capable of transmitting the 
disease. Such individuals are called infectives (I). After a characteris- 
tic latency period, exposed individuals themselves become infective 
and later immune or recovered (R). For childhood diseases, immu- 
nity is permanent and recovered individuals do not revert to the 
susceptible class. 

The SEIR model is most simply expressed as a set of four 
nonlinear differential equations: 

dSldt = m(N - S) - bSI 

dRldt = gI  - mR (1) 
of which one need only keep track of the first three. Typically, the 
population size, N is assumed constant and normalized to 1, in 
which case, the state variables are expressed as proportions with 
S + E + I + R = 1. Average life expectancy is given by llm, and lla 
and l/g are, respectively, the mean latency and infectious periods; b 
is the effective contact rate, the average fraction of susceptibles 
contacted by a single infective, which themselves contract the 
infection. 

Values of m, a, and g appropriate for various locales and diseases 
can be obtained directly from census data (in the case of m) and the 
medical literature (in the case of a andg). However, the contact rate, 
b, must be estimated indirectly from the average age of infection as 
calculated from age-specific serological profiles (10, 13). 

When the parameters m, a, b, andg are held constant, the solution 
of Eq. 1 is a weakly damped oscillation. This is inconsistent with the 
observation of recurrent epidemics in real world populations. There 
are two possible modifications of the basic SEIR model that lead to 

sustained and, for measles parameters, irregular dynamics. Both 
were discussed by Bartlett (11, 14). The first modification is to 
perturb the equations with noise. Alternatively, one can introduce 
seasonal variations in the contact rate (15, 16). Several factors may 
induce seasonally varying transmission rates: the assembling and 
dispersion of schoolchildren at the beginning and end of term and 
changes in the virulence or viability of the pathogen resulting, due 
to variations in the weather (10). 

To model the seasonal component, we replace the constant b in 
Eq. 1 by a time-dependent expression such as 

b(t) = bo(l + bl  cos 2nt) (2) 
where bo is the average contact rate and bl  is the seasonal component 
(13). Choosing values of a, g, and bo appropriate for chickenpox 
yields a simple annual cycle for all values of b l  in the interval 
0 < bl 5 0.3. This result agrees with the data obtained from New 
York City and other large cities (3, 8, 9). Repeating the calculations 
but using parameter values appropriate for measles yields a very 
different result. Specifically, one finds that qualitatively different 
dynamics obtain for different values of bl. Thus, for bl  < 0.1, one 
observes a simple annual cycle. At values of bl  around 0.2, the 
dynamics change to a 2-year cycle. Further increases in seasonality 
induce successive period-doubling bifurcations, until around 
bl  = 0.28 the solutions become chaotic (7, 17). Aron and Schwartz 
(17) have emphasized that, even after the transition to chaos, one 
continues to observe a seemingly regular alternation of high and low 
years. However, shortly thereafter, the pattern breaks down and 
there is an abrupt transition to more erratic fluctuations (7, 9) 
reminiscent of the outbreaks observed in New York City before 
1945 (Fig. 1C). Thus, for both chickenpox and measles, the SEIR 
model with seasonal variations in contact rate can generate time 
series that resemble historical data (8, 9).  

Other workers have argued that an estimate for PI  around 0.28 
for measles is too high and that the dynamics of this disease are 
better explained by a biennial cycle in the presence of noise (4, 5) .  
Adding noise to the SEIR equations with measles parameters and 
choosing bl in the interval 0.2 < bl  < 0.28 yields incidence rates 
that also resemble those observed in nature. Because noise is always 
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Fig. 1. Monthly notific.ations (up- 
per left), autocorrelation functions 
(lower left), and power spectra 
(right) computed from monthly 
notifications of (A) chickenpox in 
New York, 1928 to 1963; (B) 
chickenpox in Bornholm, 1938 to 
1948; (C) measles in New York, 
1928 to 1963; and (D) measles in 
Bornholm, 1925 to 1967; SQRT, 
square root; mon, months. 
Smoothed spectra were estimated, 
using a Tukey window with M lags. 
The numbers in parentheses are the 
uoDer and lower multi~licative con- 

4 (man) Frequency (cpy) Lag (mon) Frequency (cpy) fihince intervals. 



present in real systems, we conclude that simply inspecting the time 
series does not allow one to discriminate between chaos and noise- 
perturbed periodicity. 

Flg. 2. (A) Three-dimensional re- 
constructed phase portrait of I ( t )  
from the SEIR model with measles 
parameters used by Aron and 
Schwartz (17): m = 0.02 year-', ; 
a = 35.84 year-', = 100 year-', 
bo = 1800 year-', and b l  = 0.28. 
T is equal to 3 months. (B) Return 
map obtained by slicing the flow in 
(A) with a plane transverse to its 
direction and plotting each point 
on the section against the preceding 

Reconstructed Trajectories and Return Maps 
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One way of detecting deterministic structure in a time series is to 
reconstruct motion in the phase space as prescribed by Takens (18, 
19). For epidemiological data (case numbers), the value of I(t) is 
lagged against itself, using a fixed time delay T, and the resulting 
points are plotted in the coordinate space, I(t) versus I(t + T),  
versus I(t + 2T), . . . . As discussed, for example, by Broomhead 
and King (20), provided that one uses enough embedding dimen- 
sions, the new trajectory faithfully reproduces the dynamical proper- 
ties of the original. 

Figure 2A shows a three-dimensional reconstructed phase portrait 
for a typical realization of the SEIR model with measles parameters 
and bl  = 0.28. The trajectory appears to pivot on a conical surface. 
Slicing the orbit with a plane transverse to the flow yields a nearly 
one-dimensional section, and a plot of each point on the section 
against the precedmg point yields a return map (Fig. 2B). Effectively, 
this gives the relation of next year's cases to the current year's. In the 
present case, the return map exhibits a well-defined, though certainly 
not unique, relation between successive points on the section. Figure 
2C displays a return map computed from data for the city of Baltimore 
and its environs. Taking into account the relative paucity of data for the 
real world example, one is nonetheless struck by the overall similarity of 
Fig. 2C to Fig. 2B. Applying this procedure to other historical data 
yields similar maps (8, 9, 21, 22). 

Returning to the SEIR equations, for which one can compute as 
many points as needed, we note that the return map is in fact a 
"fractal," because successive magnifications of small pieces reveal a 
fine structure similar to that of the original (23). Interestingly and 
despite the lack of uniqueness, most points on the map can be 

point. (C) Return map obtained O'  1 
from the reconstructed phase por- x ft) 
traits of measles notifications in Baltimore from 1900 to 1963. [Fig. 2, B and 
C, is reprinted from (22) with permission of Academic Computing Publica- 
tions, Inc.] 

predicted from the preceding pair. That is, if we label points in 
temporal sequence, it is true for most Xi that Xi+l = F(Xi, Xi-l), 
with monotonic dependence on Xi- (Fig. 3). 

More Fingerprints of Chaos 
In attempting to assess the relative plausibility of the various 

hypotheses put forward to account for real world epidemics, it is 
important that one go beyond the qualitative information contained 
in pictures such as Fig. 2. Recall that chaotic systems exhibit a 
property called "sensitivity to initial conditions" (24). By this it is 
meant that nearby trajectories diverge and that the &vergence is, on 
the average, exponentially fast. Trajectorial divergence in nonlinear 
systems such as the SEIR model is quantified by the maximum 
Lyapunov characteristic exponent (LCEs) (25, 26). LCEs are noth- 
ing more than generalized eigenvalues averaged over an attractor. 
Usually, they are expressed as bits per unit time. In the absence of 
random perturbations, one or more positive exponents imply that 
orbits separate exponentially and hence that the motion is chaotic. 
For the SEIR equations, there is a single positive exponent, hl, 
which can be estimated either directly from the equations or from 
the reconstructed trajectory (26). For measles parameters and bl  = 
0.28, we obtained from the equations hl  = 0.48 bit per year (bpy). 
This compares favorably with estimates for actual epidemics (8, 9, 
21). For eight First World cities, X I  ranged from 0.3 to 0.7 bpy. 

For chickenpox parameters, the SEIR model yields a periodic 
orbit, and hl = 0. This result does not square with estimates for real 
world chickenpox epidemics which ranged from 0.12 to 0.32 bpy. 
To resolve this discrepancy, we repeated the simulations with small 
amounts of multiplicative noise. This time, we estimated hl as 0.19 
bpy when using chickenpox parameters and 0.55 bpy when using 
the measles parameters. We conclude that it is easy to find noise 
levels for which the SEIR model mimics real world behavior. Of 
greater importance (see below) is the fact that random perturbations 
have a more pronounced effect on simulated chickenpox epidemics 
(periodic dynamics) than on the measles simulations which are 
chaotic. 

To further explore the effect of noise on the positive LCE, we 
have studied the SEIR model with measles parameters and different 
values of bl in the presence of Gaussian noise (Fig. 4A). For values 
of bl  less than 0.2 and with the noise level at 1%, the estimated 
values of h1 were substantially less than estimates for eight real world 
cities. For the same values of bl  but with the noise level set to 2%, 
the confidence limits for the simulations partially overlap the data. 
Far better agreement, however, is obtained for all three noise levels 
(0%, 1%, and 2%) if we take bl  = 0.28, in which case the 
simulations and the data are indistinguishable. 

Another way of characterizing a dynamical system is to compute 
its dimension (27). The dimension of a time series measures the 
complexity of the signal by providing an estimate of the amount of 
information needed to specify the position of a point in the state 
space. 

We have computed the correlation dimension, Dc (28), for the 
historical chickenpox and measles data sets and for the SEIR model 
with chickenpox and measles parameters. The results are listed in 
Table 1 (8, 9, 21). In the presence of small noise levels, there is good 
agreement between the chickenpox simulations and the historical 
data. The same is true for measles. As in the case of the maximum 
LCE, noise has a dramatic effect on the dimension of chickenpox 
simulations but virtually no effect when the parameters are set to 
values appropriate for measles. It is also worth noting that the 
differences in dimension between the two diseases are consistent 
with differences in the return maps. Specifically, chickenpox has a 
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Fig. 3. Return map for the SEIR equations with parameter values appropri- 
ate for measles and bl = 0.28. plotted against Xi with color-coding by 
Xi-1. For most values of Xi, Xi+l dedines monotonically with increasing 
Xi- I; for example, all else being equal, a large outbreak in the previous year 
reduces the number of infections next year. Red indicates a low value of 
Xi- violet, a high value. For interpretation of the other colors, follow the 
visible spectrum. 

Table 1. Correlation dimensions for chickenpox and measles. For data 
sources, see (6). 

Community (dates) 

Disease 
Community 

size chick- Measles 
enpox 

Faroe Islands (1912-1940) 
Bomholm (1925-1968) 
Aberdeen ( 1883-1902) 
Copenhagen (1927-1967) 
Baltimore (1900-1927) 
Milwaukee (19161965) 
Baltimore County (1928-1%3) 
St. Louis (19341954) 
Deaoit (1920-1962) 
New York (1927-1963) 

SEIR equations 
SEIR equations + 2% noise 

higher dimension than measles and a return map (not shown) that 
r b b l e s  a random scatter of points (3, 8, 9). 

Finally, we computed correlation dimensions for different values 
of bl and varying noise levels (Fig. 4B). For values of bl 5 0.23, 
where the ~ p e m u b e d  dynamics correspond to an annual or a 
biennial cycle, the correlation dimensions estimated for the simula- 
tions are consistently higher than the estimates for the historical . - 
data. Conversely, in the region where the dynamics are chaotic, 
agreement between the model and real epidemics is excellent. 

In comparing Fig. 4, A and B, we note that dimension estimates 
appear to irovGe amore consistent characterization of the dynamics 
than the maximal LCE. This finding is in keeping with the 
experience of other investigators who have worked with short time 
series (29). 

Monte Carlo Simulations 
In order to reproduce the historical chickenpox data by the SEIR 

model, it is necessary to add noise to the simulations. The question 
arises as to how much noise one should add. There are several 
sources of noise that undoubtedly distort epidemiological records. 
First of all, there are observational errors. The reporting rates for 
New York, Baltimore, and Copenhagen have been &timaid as 12.5 
to 50% for measles and 8 to 30% for chickenpox (3, 15). Although 
the reporting rates (30) for chickenpox (30%) and measles (50%) in 
Copenhagen were essentially constant from 1927 to 1967, there 
may still have been month-to-month fluctuations. Second, there are 
actual pemubations to the dynamics. These can result from changes 
in population size and birth and death rates, chance variations in the 
weather, and the random movement of infectives into and out of the 
population. Finally, there is an intrinsic probabilistic element that 
results from finite populaaon size. Because the second and third 
factors affect the actual dynamics, they can induce what amount to 
"noise-induced bifurcationsn and hence changes in dimension and 
rates of trajectorial separation. Conversely, the effects of (small) 
observational error will only show up at small length scales. 

With regard to the consequences of finite population size, the 
transmission of infectious diseases follows probability rules (1 1, 14, 
31). In Eq. 1, the latency and infectious periods and the contact rate 
are all average measures and may vary from one individual to 
another. Furthermore, actual transitions are discrete rather than 
continuous. For example, the birth of a susceptible increases the 
population size by one individual; when that person is exposed, the 
group of susceptibles is reduced by one, the group of exposed 
increased by one, and so forth. 

To investigate the effects of finite populations, we reformulated 

Flg. 4. Maximum Lyapunov exponents (A) and 
correlation dimensions (8) as a function of bl of 
simulations of the SEIR model with measles 
parameten and different levels of noise, cr. For 
each combination of parameters, ten 50-year r e p  
licates were analyzed. Error bars give 95% c o d -  
dence intervals for each experiment. 
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the SEIR equations as a Monte Carlo process (8). Figure 5 shows 
Monte Carlo simulations (time series and spectra) of chickenpox and 
measles in populations with 5 million and 50,000 individuals. For 
small populations, the simulations resemble the data from Bornholm 
(Fig. 1, B and D); for large populations, the simulated data are 
similar to actual epidemics in New York (Fig. 1, A and C) (32). 
These results suggest that much of the noise in the historical data 
may result from what amounts to sampling error. For very large 
populations, the Monte Carlo simulations induce dynamical behav- 
iors identical to those obtained from the differential equations (33). 

We repeated the Monte Carlo calculations of measles epidemics 
for other population sizes and with different levels of seasonality. 
For each data set, we computed the correlation dimension (Fig. 6). 
For populations with 100,000 inhabitants or less, all values of bl 
yield essentially the same dimension. However, as the population 
size grows beyond 200,000, it becomes possible to distinguish 
different levels of seasonality. In Fig. 6, we also display the estimated 
correlation dimensions for the historical data. Dimensions for real 
cities are in good agreement with the Monte Carlo simulations only 
if we assume that bl 2 0.28, that is, that the dynamics are intrinsical- 
ly chaotic. 

These results further accord with the notion of "critical commu- 
nity size," which is the minimum population size for which a disease 
will not die out as a result of chance extinction. As noted by Bartlett 
(11) and others, recurrent measles epidemics in small isolated 
populations are controlled by extinction and chance introduction, 
factors that are independent of bl  and hence of the long-term 
deterministic dynamics. For larger populations, chance extinctions 
are less probable, in which case patterns of infection do depend on 
bl. For measles, the critical community size has been estimated to be 
around 250,000 (11, 14, 34), which is roughly the point at which 
the curves in Fig. 6 diverge. 

Conclusions 
The foregoing analysis suggests that chickenpox epidemics in 

large populations correspond to noisy limit cycles-periodic orbits, 
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Fig. 6. Effect of the population size on the correlation dimension of Monte 
Carlo simulations with measles parameters and different values of b,. 
Replicates and error bars are as in Fig. 4. The solid circles are the correlation 
dimensions calculated for the ten historical measles data sets. 

with a period of 1 year. For measles epidemics, we have considered 
three hypotheses: 

1) The fluctuations have a probabilistic origin (11, 14). 
2) The dynamics correspond to a high-low 2-year cycle perturbed 

by noise (4, 5, 10, 17, 35). 
3) The fluctuations are chaotic (3, 4, 7-9, 21, 36). ' 

Hypotheses 2 and 3 require that the transmission rate is seasonally 
dependent, whereas hypothesis 1 requires no seasonality. Our 
analyses suggest that, for large populations, seasonality is necessary 
to account for the estimates of dynamical quantities such as LCEs 
and correlation dimensions. ~ o k e v e r ,  fo r  small populations, the 
dynamics accord with chance extinction and immigration, hypothe- 
sis 1. As for hypotheses 2 and 3, the critical point is the magnitude 

:of the seasonal component, b l  (4). This parameter was estimated by 
London and Yorke (15) to be around 0.25. Other workers (5) 
suggested an upper limit of 0.2, which is in the region where the 
SEIR model shows a biennial cycle. Our own studies suggest that 
the dynamics of the historical data sets correspond to those of the 
SEIR model when 0.28 5 bl  5 0.36. We therefore conclude either 

Frequency (cpy) 

I 10 
0 400 0 2 

Lag @on) Frequency (cpy) 

Fig. 5. Monte Carlo simulations of (A) chick- 
enpox and (B) measles for populations of 5 
million individuals; Monte Carlo simulations 
of (C) chickenpox and (D) measles for popula- 
tions of 50,000 individuals. 
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that the claim for b~ = 0.2 is wrong. or that the SEIR model is an " 
overidealization and that more realistic models would show chaos at 
lower values of b l .  

Our analyses also argue against the likelihood that factors such as 
changes in the population size or other parameters could result in 
fluctuations similar to those observed for measles epidemics. Specifi- 
cally, estimated correlation dimensions were independent of the 
population size for populations of more than 200,000 (Fig. 6). In 
sum, the most plausible interpretation of the historical data is that, 
before mass immunization, measles infections in large communities 
were chaotic. This interpretation implies that fluctuations in inci- 
dence have a large deterministic component and are, at least in 
principle, subject to nonlinear forecasting techniques such as those 
developed by Farmer and Sidorowich (37). However, these conclu- 
sions are entirely within the context of the SEIR model. It remains 
possible that other models, in which chaos does not occur, can give 
equally good or even better fits to the data. 
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