
cialization and their orientation specificity. 
An accumulation of anatomical, physio

logical, and psychophysical data suggests 
that the visual processing of form, color, 
depth, and motion is segregated into sepa
rate pathways and structures in the visual 
cortex (27). We have shown that high spatial 
resolution optical imaging can be used to 
visualize many of these components of visual 
processing in vivo, using activity-dependent 
intrinsic signals. We have also shown that 
these subdivisions of visual processing (for 
example, the blobs of VI and the thick and 
thin stripes of V2) can be distinguished by 
their specialized functional properties and 
can now more easily be studied by the use of 
optical maps for guiding single-unit record
ing and tracer injections (26). 

Note added in proof: We have found that by 
imaging with a shallow depth of field below 
the cortical surface, blood vessel artifacts can 
be nearly eliminated (28). 
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same pathways are activated noncontiguous-
ly. Neuronal changes resulting from associa
tive plasticity are of particular interest, be
cause they are likely to undeflie classical or 
Pavlovian conditioning (1) and because the
oretical work indicates that associative plas
ticity may function as a fundamental "learn
ing rule" for more complex phenomena such 
as higher order forms of classical condition
ing, associative memories, and self-organiza
tion of neural networks (2). Although vari
ous instances of short-term (minutes to 
hours) associative synaptic plasticity have 

Long-Term Synaptic Changes Produced by a Cellular 
Analog of Classical Conditioning in Aplysia 

DEAN V. BUONOMANO AND J O H N H. BYRNE 

A change in synaptic strength arising from the activation of two neuronal pathways at 
approximately the same time is a form of associative plasticity and may underlie 
classical or Pavlovian conditioning. A cellular analog of a classical conditioning 
protocol produces short-term associative plasticity at the connections between sensory 
and motor neurons in Aplysia. A similar training protocol produced long-term (24-
hour) enhancement of excitatory postsynaptic potentials (EPSPs). EPSPs produced by 
sensory neurons in which activity was paired with a reinforcing stimulus were 
significantly larger than unpaired controls 24 hours after training. Thus, associative 
plasticity at the sensory to motor neuron connection can occur in a long-term form in 
addition to the short-term form. In this system, it should be possible to analyze the 
molecular mechanisms underlying long-term associative plasticity and classical condi
tioning. 
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been described in the past decade, little is 
known about long-term (days) forms of 
associative synaptic plasticity (1). 

In Aplysia a cellular analog of a classical 
conditioning paradigm produces a short- 
term form of associative plasticity (3, 4), 
termed activity-dependent neuromodula- 
tion, at the synapse between the sensory and 
motor neurons of the siphon and tail with- 
drawal circuits. In this neural analog of 
classical conditioning, activation of a senso- 
ry neuron represents the conditioned stimu- 
lus, electrical stimulation of the tail or of a 
peripheral nerve represents the reinforcing 
or unconditioned stimulus, and the excitato- 
ry postsynaptic potential (EPSP) in the mo- 
tor neuron produced by stimulation of a 
sensory neuron represents the conditioned 
response. EPSPs produced by sensory neu- 
rons in which activity was paired with a 
reinforcing stimulus exhibited significantly 
more short-term enhancement than those 
EPSPs elicited by sensory neurons that were 
activated in an unpaired fashion with a 
reinforcing stimulus (3, 4). Although activi- 
ty-dependent neuromodulation exists in a 
short-term form at the sensory neuron to 
follower neuron connection, it is not known 
whether it also exists at the same site in a 
long-term form. A long-term form of activi- 
ty-dependent neuromodulation would pro- 
vide a neural substrate for the long-term 
memory of classical conditioning as well as a 
basis for molecular analyses of the mecha- 
nisms underlying long-term associative plas- 
ticity and classical conditioning. 

To examine whether activity-dependent 
neuromodulation exists in a long-term form, 
we applied a cellular analog of a classical 
conditioning paradigm (4) to the isolated 
pleural-pedal ganglia of Aplysia califovnica 
(5) .  Changes in the amplitude of monosyn- 
aptic EPSPs elicited by two sensory neurons 
in a common motor neuron (6) were used as 
the measures of associative and nonassocia- 
tive plasticity. Training consisted of five 
trials with an intertrial interval of 5 min. 
Within a training trial (Fig. lA),  each senso- 
ry neuron was activated with a train of ten 
suprathreshold pulses. Onset of the activa- 
tion of one sensory neuron (paired; SN+ ) 
was followed 400 ms later by a reinforcing 
stimulus composed of a train of electric 
shocks to a peripheral nerve (nerve shock) 
(7). The other sensory neuron (unpaired; 
SN-) was activated 2.5 min before or after 
activation of SN+ (Fig. 1A). 

Stimulation of SN- and SN+ produced 
EPSPs of similar amplitude in the motor 
neuron before training (Fig. 1B) (8). Train- 
ing (Fig. 1A) was initiated immediately after 
the baseline test. Although the EPSPs elicit- 
ed by both SN- and SN+ were enhanced 5 
min after training (Fig. lC), those produced 

by SN+ were enhanced to a greater extent. 
The increase in the EPSP produced by SN- 
was caused by short-term heterosynaptic 
facilitation. The greater enhancement ob- 
served in the EPSP produced by SN+ repre- 
sents short-term activity-dependent neuro- 
modulation (3, 4). Af;er ;he 5-min test, 
neurons that neighbored SN-, SN+, and 
the motor neuron were injected with Fast 
Green (9) and the chamber was placed in an 
incubator at 15°C for 24 hr. The following - 
day the same three cells were reimpaled, and 
the 24-hr test was performed (Fig. 1D). 
Both SN- and SN+ cells elicited enhanced 
EPSPs relative to their amplitude before 
training. The EPSP produced by SN+, 
however, exhibited a larger increase in am- 
plitude than that of the SN- cell. Thus the 
training procedure leads to a long-term pair- 
ing-specific enhancement of the connection 
between the sensory neuron and its follower 
motor neuron. 

Data from 14 experiments are illustrated 
in Fig. 2 (10). Short-term associative plastic- 
ity is illustrated by the difference in the 
amplitude of the EPSPs produced by the 
SN- and SN+ cells (SN-, 140 ? 14%; 
SN+, 203 * 21%) during the 5-min test. 
Moreover, long-term associative enhance- 
ment is evident by t he  difference in the 
amplitude of the EPSPs (SN-, 245 ? 39%; 

A Training 

SN+, 350 k 58%) during the 24-hr test. A 
two-way analysis of variance with repeated 
measurds on both factors (training and time) 
revealed a significant effect of training 
[F(1,13) = 13.58; P < 0.011. In contrast, 
the analysis of variance revealed that neither 
the effect of time nor of the time-treatment 
interaction was significant (11). Thus a clas- 
sical conditioning procedure that produces 
short-term associative plasticity leads to the 
induction of long-term associative plasticity 
in the same cells. 

The degree of associative plasticity (that 
is, the ratio of the amplitudes of the EPSPs 
produced by SN+ and SN-) was 1.4 both 
at the 5-min and 24-hr tests, indicating that 
the associative plasticity is expressed to the 
same degree in both its short- and long-term 
forms. The degree of short-term associative 
plasticity was similar to that observed previ- 
ously (4, 12). No significant changes were 
observed in the input resistance of the motor 
neuron during eithe; the 5-min or 24-hr test 
(13). This observation is consistent with 
previous data on short-term plasticity of 
these synapses (14) and indicates that gener- 
alized postsynaptic changes are unlikely to 
contribute to long-term plasticity. 

The mechanism underlying short-term as- 
sociative plasticity in Aplysia, termed activi- 
ty-dependent presynaptic facilitation (3) or 

- 
2.5 min 

SN+ SN- 

B Before training C 5-min test D 24-hr test 

SN+ SN- SN+ SN- SN+ SN- 

Fig. 1. Training and testing during conditioning of the inputs of two sensory neurons to a motor 
neuron (MN). (A) Training procedure (illustrated by trial 2). Both sensory neurons were activated with 
a train of ten depolarizing pulses, eliciting on average 17 spikes. One sensory neuron (SN+) was 
activated 400 ms before a train of electric shocks to the nerve (nerve shock). The other sensory neuron 
(SN-) was activated 2.5 min after stimulation of the nerve. (B) Amplitudes of the EPSPs produced by 
both sensory neurons before training. (C) Amplitude of the EPSPs 5.min after training. (D) Amplitude 
of the EPSPs produced by the same sensory neurons 24 hr after training. During each test phase three 
action potentials were elicited in each sensory neuron (the third EPSP of each test is shown). 
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Fig. 2 Long-term associative plasticity of the 
synaptic connections between sawry and motor 
neurons. There was a s@cant di&rence in the 
amplitudes of the EPSPs produced by the SN- 
and SN+ group both at the 5-min and 24-hr test. 
Error bars rrpresent the SEM. 

activity-dependent neuromodulation (4),  
appears to be an elaboration of the mecha- 
nisms of short-term nonassociative plastici- 
ty, that is, heterosynaptic facilitation. The 
mechanism for long-term associative plastic- 
ity may rely on the same mechanisms as 
long-term nonassociative plasticity. The 
mechanisms wnmbuting to both short- and 
long-term forms of nonassociative plasticity 
have been analyzed extensively. Reinforcing 
stimuli lead to the release of modulatory 
transmitters that induce an increase in aden- 
osine 3',5'-monophosphate (CAMP) within 
the sensory neurons (15). Cyclic AMP in 
turn contributes to short-term facilitation 
through a CAMP-dependent phosphoryl- 
ation (16), as well as the induction of long- 
term facilitation through CAMP-dependent 
regulation of gene expression (17). Al- 
though both short- and long-term nonasso- 
ciative plasticity appear to use wmmon cel- 
lular mechanisms for induction and expres- 
sion (18), only the latter depends on new 
protein synthesis (19). 

In short-term associative plasticity, the 
amount of CAMP in the cells is increased 
above that observed during nonassociative 
plasticity (20). Calcium influx associated 
with action potentials in the sensory neu- 
rons is thought to interact synergistically 
with the activation of adenylate cyclase by 
modulatory transmitters to amplify the syn- 
thesis of CAMP (3, 4, 20, 21) and therefore 
enhance CAMP-dependent efects beyond 
those produced by modulatory transmitters 
alone. Thus, for long-term associative plas- 
ticity, increased concentrations of CAMP 
might lead to an enhancement of CAMP- 
dependent regulation of the same genes 
involved in long-term nonassociative plastic- 
ity. In this case, long-term associative plas- 

ticity would be a direct extension of long- 
term nonassociative plasticity. It is possible, 
however, that the& are q&tati& difer- 
ences between long-term nonassociative 
plasticity and long-term associative plasticity 
(22). The modulatotv transmitter and ca2+ 
igf;ahg pathways &dd interact synergisti- 
cally downstream fiom adenylate cyclase. 
For example, CAMP and ca2+ could interact 
to regulate the expression of genes specific 
for long-term associative plasticity (23). Our 
results provide an experimental basis for 8. 

anal& the molecul& mechanisms under- 
lying lGg-term associative plasticity and 
long-term forms of classical conditioning. 
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Use of Prior Vaccinations for the Development of 
New Vaccines 

There is currently a need for vaccine development to improve the immunogenicity of 
protective epitopes, which themselves are often poorly immunogenic. Although the 
immunogenicity of these epitopes can be enhanced by linking them to highly 
immunogenic carriers, such carriers derived from current vaccines have not proven to 
be generally effective. One reason may be related to epitope-specific suppression, in 
which prior vaccination with a protein can inhibit the antibody response to new 
epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus 
toxoid was identified that, when linked to a B cell epitope and injected into tetanus 
toxoid-primed recipients, retained sequences for carrier but not suppressor function. 
The antibody response to the B cell epitope was enhanced. This may be a general 
method for taking advantage of previous vaccinations in the development of new 
vaccines. 

I T WOULD BE EXTREMELY USEFUL I F  

highly immunogenic proteins widely 
used in vaccines [such as tetanus toxoid 

(TT)] could be used as carriers to develop 
new vaccines for poorly immunogenic pro- 
tective epitopes (such as small peptides). 
Unfoka te ly ,  overall effectiveness with this 
approach has not been generally achieved (1, 
2). Since the antibody response to a hapten 
coupled with a carrier protein can be inhibit- 
ed when the recipient has been previously 
immunized with the unmodified protein 
(3) ,  it is possible that poor immunogenicity 
of the hapten + carrier is due to prior 
vaccinations. 

The phenomenon, termed epitope-specif- 
ic suppression, is related in part to the 
presence of carrier-specific B cells (4) and 
suppressor T cells (4, 5 ) .  The observation 
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that peptides recognized by suppressor and 
helper T cells can be distinct (6 )  suggested 
that some peptides might only be function- 
ally recognized by the latter cell type in 
carrier-primed animals. We therefore at- 
tempted to identify a peptide with helper 
but not suppressor function. The involve- 
ment of carrier-specific B cells in epitope- 
specific suppression provided a criterion for 
peptide selection; a basis for excluding a 
peptide from consideration as a carrier se- 
quence would be cross reactivity between 
the peptide and antibody to the carrier. 

The worldwide use of T T  prompted us to 
choose this protein as the model. Further- 
more, a conjugate of T T  and repeats of the 
sequence Asn-Ala-Asn-Pro (NANP), the 
irnmunodominant sequence of the major 
surface protein of Plasmodiumfalcipavum spo- 
rozoites (7, 8) ,  has already undergone clini- 
cal testing as a vaccine (2). The goal was to 
prepare a peptide bearing helper T and 

nonimmunogenic B cell epitopes; such a 
composite peptide has been described (9).  
T o  obtain a peptide capable of eliciting the 
desired T cell activity, we hydrolyzed T T  
with trypsin after reduction and alkylation. 
Peptides in the digest were separated by 
column chromatography and activity was 
monitored by in vitro T cell proliferation 
tests with human peripheral blood leuko- 
cytes (PBLs) and lymph node cells from 
mice injected with TT. Since helper T cells 
proliferate under these conditions, the assays 
provided an initial screen for appropriate 
peptides. A peptide from an active fraction 
was partially sequenced and, on the basis of 
the published sequence of TT, a peptide 
containing amino acid residues 73 to 99 
(TT73-99) was synthesized. 

The peptide was tested for cross reactivity 
with antisera against TT. Neither mouse nor 
human antisera against T T  reacted with 
TT73-99 (Table 1, experiment 1, and Table 
2). These data suggested that TT-specific B 
cells reactive with TT73-99 may not have 
been sensitized after T T  immunization in 
either species and, therefore, that this poten- 
tial basis for suppression would be absent. 
The positive T cell proliferation results in 
initial screening studies indicated that 
TT73-99 was recognized by helper T cells. 
To investigate this, we primed mice with 
TT73-99 and challenged them with 
(NANP)3TT. Such animals produced in- 
creased titers of antibody to NANP [anti- 
NANP] and antibody to T T  (anti-TT) (Ta- 
ble 1, experiment 1). The use of BALB/c 
mice, which are genetically unresponsive to 
NANP at the T cell level ( l o ) ,  and the 
absence of antibody cross reactivity between 
NANP or T T  and TT73-99 indicated that 
priming of the helper T cell had occurred. 

TT73-99 contained information for car- 
rier function and did not cross-react with 
antibody against the parent protein. This 
peptide should not be susceptible to carrier- 
specific, B cell-mediated suppression. We 
predicted that this peptide, when linked to a 
B cell epitope, would not be susceptible to T 
cell-mediated suppression in TT-primed 
mice. We tested this prediction by compar- 
ing the effect of prior immunization with 
T T  on the subsequent response to a conju- 
gate containing either the entire protein, 
(NLWP)~TT, or a peptide with only a por- 
tion of the protein, (NANPJ4TT73-99. 

As expected, T T  priming inhibited the 
anti-NANP response to (NANP)3TT even 
though the anti-TT response was elevated in 
pretreated mice (epitope-specific suppres- 
sion). Not only did T T  priming fail to 
inhibit the anti-NANP response to 
(NANP)4TT73-99, it actually resulted in 
the enhancement of the anti-NANP re- 
sponse after primary and secondary chal- 
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