
the late 1960s. V203 with 3.75% Cr, for 
exanlple, undergoes an insulator-metal tran- 
sition under pressure and has a weakly posi- 
tive Clapeyron slope, which terminates in a 
critical point at 1.25 GPa and 390 K (16). 
Structural studies have shown that the tran- 
sition below Tc is isostructural and is associ- 
ated only with a lscontinuous change in 
lattice parameter. Furthermore, the conduc- 
tivity first decreases with increasing tem- 
perature above Tc but then increases. This 
behavior was interpreted as a reentrant met- 
allization that is continuous at high tem- 
perature with a negative Clapeyron slope 
(metallic phase above T,) (17). This again 
may be similar to the behavior of hydrogen 
in the high-temperature, continuous metalli- 
zation regime (18). Finally, we point out 
there is also recent evidence for analogous 
critical phenomena associated with pressure- 
induced isostructural insulator-metal transi- 
tions in other classes of materials (19). 
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Diffraction from Polymerized Membranes 

Flexible polymerized membranes in a good sol~ent are expected to exhibit a remarkable 
low-temperature flat phase, characterized by a diverging bending rigidity, vanishing 
elastic constants, and large fluctuations both parallel and perpendicular to the surface. 
A theory of the equilibrium structure factor provides a good fit to extensive molecular 
dyn&ics simulations of simplified "tethered surface" models of these materials. These 
results show how information about the size, thickness, and internal structure of 
polymerized membranes can be extracted from diffraction experiments. 

T WO-DIMENSIONAL POLYMERIZED 

networks appear naturally in a bio- 
logical context ( I ) ,  and can be made 

artificially by, for example, modifying tradi- 
tional methods of polymer synthesis, or by 
polymerizing ampiphillic bilayers or mono- 
layers (2). A dilute solution of flexible sheet- 
like macromolecules prepared in this way 
should have properties which are strikingly 
different from conventional linear polymer 
chains. Polymer chains in a good solvent 
crumple into a fractal object whose charac- 
teristic size or "radius of gyration" R, varies 
as a nontrivial power of the linear dimension 
L, R, - L ~ ' ~  (3). Linear polymers fold up 
on scales larger than a "persistence length" 
which is typically only a few monomer units 
in size. The statistical mechanics of two- 
dimensional polymer networks (4) has at- 
tracted intense theoretical interest, in part 
because, unlike linear polymers, they are 
expected to exhibit a low-temperature flat 
phase with an injnite persistence length. The 
flat phase arises because the resistance to in- 
plane shear deformations leads to an anoma- 
lous stiffening of the surface in the presence 
of thermal fluctuations (5 ) .  This flattening 
results from a delicate interplay between 
geometry and statisticd mechanics which 
has no analog in conventional polymer solu- 
tions. 

The simplest model of polymerized mem- 

F. F. Abraham, IBM Research Division, Almaden Re- 
search Center, 650 Harry Road, San Jose, CA 95120- 
6099. 
D. R. Nelson, Lyman Laboratory of Physics, Harvard 
University, Cambridge, MA 02138. 

branes is a "tethered surface," composed of 
hard spheres of diameter d each tied to six 
near neighbors to form a planar triangulated 
network; the network is then equilibrated at 
a finite temperature by allowing it to bend 
and possibly crumple in three dimensions. 
Although the first simulations of such teth- 
ered surfaces were interpreted in terms of a 
high-temperature crumpled phase (4), ex- 
tensive simulations of much larger surfaces 
with a very similar potential revealed that 
these objects were in fact flat (6, 7 ) ,  with 
very large fluctuations in the direction paral- 
lel to the average surface normal (see Fig. 1). 

The elastic properties of this flat phase are 
embodied in an unusual long wavelength 
Hamiltonian which describes the energy of 
in-plane and out-of-plane phonon modes. 
In-plane phonon displacements u(xl, x2) 
and an out-of-plane displacement Axl, x2) 
are defined by the equation 

which gives the three-dimensional position 
vector r(xl, x2) of an atom in the membrane 
as a function of internal membrane coordi- 
nates xl and x2 attached to the monomers. 
These internal parameters multiply orthogo- 
nal unit vectors el and e2 which span a flat 
zero temperature reference state (typically, a 
hexagonal piece of triangular lattice in com- 
puter simulations) of characteristic linear 
dimension L. Distances will be measured in 
units of d, the average spacing between 
nearest neighbor monomers in the reference 
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state. In Fig. 1, we present a top and side 
view of a particular configuration of a large 
simulated membrane, illustrated by drawing 
the tedmed bonds between the 4219 mono- 
mas. The order parameter mo measures the 
shmkage of the surface caused by thermal 
fluctuations (8). The probability of a partic- 
ular surface configuration is proportional to 
cxp (-HdkB7), where the cfktive Hamil- 
tonian, expressed in terms of the Fourier 
transformed phonon variables u(q) and 
Aq), is 

Unlike the conventional elastic theory of 
thin plates (9), the renormalized wave vec- 
tor-dependent bending rigidity ~ ~ ( q )  and 
in-plane elastic parameters p.~(q) and kR(q) 
are singular for small q (5, 10). The bendmg 
rigidity diverges accocdmg to the expression 
(5, 10). 

1 
~ ~ ( 4 1  - p (3) 

while the clastic c o m t s  vanish as q tends 
to zero (10) 

The exponent g determines how the mem- 
brane thickness C f ) I n  scales with L (5, 11), 

( f ) l n  - LC. As shown by Aronovitz and 
Lubcnsky, the exponents 1; and o ace not 
independent, but obey instead the impor- 
tant scaling relation (10) 

The same result tbllows fiom a stmghtfor- 
ward generalization of the integral equation 
for ~ ~ ( q )  derived by N e h n  and Peliti (5). 

In this report we study the structure 
function associated with t c thad  surfaces in 
the flat phase. The structure function (see 
Mow) is closely related to the spatial Fouri- 
er tcansfbrm of the monomer positions in a 
p o l y m d  membrane; it can be mcasurcd 
experimentally via light, x-ray, or neutron 
dSraction. We calculate the strucme func- 
tion associated with the coarscgrained phe- 
nomenological made1 of the flat phase 
sketched above, and show that it provides a 
good description of extensive molecular 
dynamics simulations of tethaxd models. 
We measure the exponents 1; and w and 
ve* that they satisfi Eq. 5. Our results 
show how important intbcmation about the 
internal saucture of real po1ymmk.d mern- 
branes can be extracted from ditkaion 
experiments on both oriented and unorient- 
ed samples. 

We first address the issue of why triangu- 
lated tethered surfaces are flat (6). Thc iso- 
tropic tethering potentials of Kantor et al. 
(4) and Abraham et al. (6) lead to very 
flexible membranes with no aplicit micro- 

Flg. 1. A perspective and side view of an inamtan 
composed of 4219 monomers. 

scopic bendmg rigidity. A priori, one might 
have expccd such surfaces to uumple (4). 
One natural explanation of the results of 
Abraham et al. (6) is that a bendmg rigidity 
proportional to temperature is generated for 
entropic reasons by excluded volume inter- 
actions, even if thcrc is no such term in the 
micrampic Hamiltonian (1 1). In fict, such 
a term is knerated immediately upon intro- 
ducing next ncarest neighbor cxdudcd vol- 
ume constraints into a tethcred network. A 
systematic study of the dkts of reducing 
this rigidity by punching holes in the man- 
brane (12) is currently under way (13). It is 
possible that @-like tethered surfaces with 
s&icicntly large perforations will be in the 
crumpled phase. Thc spccain protein s k l c  
ton of erythrocytes (I), separated from its 
natural lipid environment and in a solution 
with a short Debye sccanhg length, would 
be an cxcdlent candidate for such a mem- 
brane. Adding an explicit bending rigidity 
to a tchgdated network (4), but with a 
negative sign to pertiay. compensate for the 
positive cntropic contribution, could also 
lead to a crumpling transition. 

In the remainder of this report, we con- 
centrate on simple triangulated membranes 
in the flat phase. Our simulations were as 
described elsewhere (6), carried out on hcx- 
agonal sheas excised from a triangular lat- 
tice containing L monomers along the diag- 
onal (14). The total number of monomers is 
N = ( 3 ~ '  + 1)/4. F i  2 shows the 
structure function for an oriented mem- 
brane with L = 49 (that is, 1801 mono- 
mcrs).ThisstcucturefiuKeionisddinedby 

what r,(g) is the monomer 'caocdinatc 
along the direction of the smallest cigenval- 
uc of the moment of inertia tensor, and 
rL($ is the corresponding perpendicular 
component. The x-axis is thus aligned with 
the average normal to the &, the bra&- 
crs indicate both a t h c d  average and an 
a- over directions papcndi& to 2. 
Expcrkntal d i za tbns  of oriented teth- 
crdd surf;lccs are possible by, fix h a n a ,  
codhng membranes bctwccn parallel glass 
plans. 
Thc stt.llcturc function displayed in Fig. 2 

is d l c ,  bccause of the nontrivial 
power law dependence along the 9,-axis and 
bccause of the dhinaive d t i o n s  in the 
shoulder along the 4,-direction. To under- 
stand this behavior, we must first mczpurt 

the exponents !, and o. We can determine 
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the thickness exponent £ from a log-log plot 
of S(qz, 0, L) = <t>(gLs) for a variety of values 
of L (see Fig. 3). The data for different L-
values collapses when plotted versus qlJ^ 
with £ « 0.65, in rough agreement with 
earlier estimates (7, 5, 11) of the membrane 
thickness exponent, but somewhat smaller 
than the result £ = 0.8 quoted by Abraham 
et al. (6) and based on the dependence 
between the smallest eigenvalue of the mo
ment of inertia tensor and the membrane 
size. The value £ = 0.65 is consistent with 
the scaling prediction (4) <t>(x) ~ \lx21^ for 
large x. Note from Fig. 3 that the crossover 
to this asymptotic behavior happens only for 
very large surfaces; the correct asymptotic 
behavior is not evident in the scaling plots of 
the smaller surfaces studied by other re
searchers (7). 

To determine the exponent w, we have 
plotted the mean squared in-plane monomer 
coordinate (rl) (measured relative to the 
center of mass) versus the squared internal 
distance of the monomer from the center of 
membrane. From Eq. 1 we expect that 

where the coefficients A, B, and B' depend 
on the coefficients in Eqs. 3 and 4. We shall 
take B = B' for simplicity, although this 
assumption is easily relaxed. Upon taking 
the continuum limit in Eq. 8 and replacing 
the hexagonal integration domains by disks 
of diameter L, we find 

S(qz, q^ L) 

: V T " 7 

IT Jo 

-V2(bxqzLW 

cos s -

(10) 

x Jo(b2q^Ls)e- •x/lB{q_t_jLr2s°riY 

<rl(*)) = mW + m2
0(u

2) (7) 
As shown in Fig. 4, plots for different L 
values are indeed linear (15), The intercepts 
determine (u2) which, upon using Eq. 2 to 
evaluate the average, is expected to scale like 
Lw. A fit to compact membrane data for 
L = 13, 25, 49, and 75 gives co = 0.66. 
Inserting this result into the scaling relation 
Eq. 5 we find £ = 0.67, in very good agree
ment with our earlier result £ = 0.65. 

These exponents allow us to compute the 
structure function displayed in Eq. 6. The 
decomposition (1) leads to 

where J0(x) is a Bessel function. The param
eters bx and b2 are fixed by the behavior of 
the structure function for small g, 

S(*z, ^ , L) = 1 - Azq
2

z - A ^ i + Ofa4) 

(11) 

Az is the smallest eigenvalue of the moment 
of inertia tensor 

/ap = (l/2N2) I [ r a ( x ) - r a ( x ' ) ] 
x, x' 

x [rp(x) - rp(x')] (12) 

while A_L is the average of the remaining two 
eigenvalues. We then have 

and 
bx = lim VAz(L)//iL2^ 

b2 = lim VXjLJJl2T
r 

where 

S(4 :, ^ L) = i I iq , • mo(x - x') 
7T Jo 

exp 

:xp 

r 

~ f <[rz(?) " rz(x')]2) 

"0 /r / \ 
— q^iq^j([u^i(x) - u^ 

•(?')] 

x [cos ls - s V l - s2 

for { = 0.65 and 

4 r1 

h = ~~ ds s3 [cos ls — 
IT JO 

x [u^Jx) - ^ ? ' ) ] > 
(8) 

where i, j = x, y. 
Upon using Eqs. 3 and 4, we find that the 

exponentiated averages must take the form 

<['z(?) " rz(x')]2) - A\x - x ' |* (9) 

and 

WO K / ( x ) ~ U^i(x')][u^j(x) - M-u/x')]) 

« |x - x'|» x IBLJ - ^ A + B' ^ ^ 
L V 4- / 4 

(9') 

] = 0.18644 (13) 

(13') 

The remaining parameter B in Eq. 10 (or, 
more generally B and B', if Eq. 9 is used) 
must be fit to experiment. 

The asymptotic large L structure function 
is determined once these parameters are 
known. We expect Eq. 10 to be accurate for 
all wavelengths large compared to typical 
monomer dimensions including, in particu
lar, wavelengths large compared to either 
the transverse or in-plane membrane size. 
Although we do not expect Eqs. 9 to be 
reliable for |x - x'| =s d or |x - x'| « L, 
the factor s[cos-1s - s V l - s2] deempha-
sizes these regions in Eq. 10. 

Fig. 2. The structure function S(qz, q^, L) for an 
oriented compact membrane with L = 49 as mea
sured from simulation (large surface) and calculat
ed from theory (small surface). All scales are 
logarithmic as in Figs. 3 and 5. 
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The universal scaling function @ ( q ~ i )  
S(q,, 0, L) obtained from Eq. 10 is plotted 
in Fig. 3, and provides a reasonable fit to the 
data. The fit is significantly better for 
L = 49 and 75. Note that the theory pre- 
dicts a breakdown of scaling with L for q in 
the transverse direction: S(0, q,, L) is not a 
function only of the product q,L over a 
wide range of intermediate wave vectors. As 
shown in Fig. 5, the structure functions for 
different L exhibit L-independent oscilla- 
tions starting at q,L = 10, with the deepest 
oscillations occurring for large L. The inset 
shows that the theory (with B as a fitting 
parameter) captures this breakdown of scal- 
ing quite nicely. The physical reason for this 
peculiar behavior is the large in-plane pho- 
non fluctuations: scaling is restored in Eq. 
10 if we suppress these fluctuations by arb;- 
trarily setting B = 0. 

The inset to Fig. 2 shows the fidl theoreti- 
cal prediction for S(q,, q,, L) when L = 49. 
Although this hydrodynamic theory cannot 
describe the inteiestina structure &the sim- " 
ulation for qd r 1, the overall shape and 
folds in the structure function are accounted 
for rather well. 

Many laboratory experiments on tethered 
membranes will be carried out on unorient- 
ed membranes, and hence will be forced to 
deal with the a directionally averaged struc- 
ture fimction S(q, L). ~ v e n  in thk case, it 
may be possible to extract information 
about the size and structure of a ~olvmer- 

I i 

ized membrane. A comparison of computer 
simulations with the theory for an L = 49 
tethered surface averaged over different ori- 
entations is shown in Fig. 6. The kink which 

Compact 
L  = 49 

Fig. 6. The structure function of an unoriented 
compact membrane from simulation and theory. 

is barely discernible around qL = 27r is a 
remnant of the first sharp dip in S(0, q,, L). 
For ~ T L - '  < q < 27rL-I, the membrane 
appears macroscopically flat and we would 
expect S(q, L) - q-2. For 27r~-I  < q < 
27rd-', the finite thickness of the membrane 
becomes evident and we expect S(q, L) - 
q-2'1. A region of slope -2 is evident be- 
yond the kink in Fig. 6, and one can detect 
the beginning of a region with slope -215 = 
-3.1 just before the onset of the atomic 
scale oscillations. The two regimes become 
more evident when the theoretical curve is 
extrapolated to the much larger L-values 
(such as L = 500) which may soon become 
accessible in the laboratory. 

We note that a closely related analysis 
applies to surfaces in the crumpled phase, 
where radius of gyration scales like RG - LY, 

Theory: S(O,q,,L ) . L . 1 3  
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Fig. 5. The in-plane structure func- 
tion S(0, q,, L) versus q,L over a 
wide range of L as measured from 
simulation and calculated from the- 
ory. The theoretical structure func- 
tions for L = 13 and 25 are indis- 
tinguishable in the plot. 

with v = 415 (4). The structure function in 
this case assumes the form S(q, L) = 
q(qLv), where the scaling function is given 
by 

The scale factor c is determined by matching 
the small q expansion of Eq. 14 to the 
formula S(q, L) = 1 - ( 1 1 3 ) ( ~ ~ ~ ) ~  + O(q4). 

A number of groups appear to be on the 
verge of systematic experimental studies of 
flexible polymerized membranes (16). By 
comparing computer simulation results to a 
simple theory of the structure function, we 
have shown here how information about the 
internal structure of the low-temperature 
flat phase can be extracted from standard 
diffraction experiments. The predictions are 
quite different from results expected for 
linear polymer chains; it would be very 
gratifying to see them tested in real labora- 
tory experiments. 
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Evolution of the Northern Santa Cruz Mountains by 
Advection of Crust Past a San Andreas Fault Bend 

The late Quaternary marine terraces near Santa Cruz, California, reflect uplift 
associated with the nearby restraining bend on the San Andreas fault. Excellent 
correspondence of the coseismic vertical displacement field caused by the 17 October 
1989 magnitude 7.1 Loma Prieta earthquake and the present elevations of these 
terraces allows calculation of maximum long-term uplift rates 1 to 2 kilometers west of 
the San Andreas fault of 0.8 millimeters per year. Over several million years, this uplift, 
in concert with the right lateral translation of the resulting topography, and with 
continual attack by geomorphic processes, can account for the general topography of 
the northern Santa Cruz Mountains. 

A LTHOUGH THE GENERAL PAT~ERN occurred [the magnitude (M,) 7.1 Loma 
of strain expected around restrain- Prieta earthquake of 17 October 1989 (5, 
ing bends in suike-slip faults has 6)] from which the coseismic uplift pattern 

long been known to result in uplift near the may be inferred, and the geomorphic denu- 
bend ( I ) ,  the long-term dynamics of this dation rates are available. In this paper, I 
uplift have rarely been documented. Strain show that the time scales and magnitudes of 
patterns associated with suike-slip faults 
vary with the bend geometry, and kith the 
slip distribution along the fault (2). Uplift 
rate maxima should coincide with the center 
of restraining bends, and die away from 
these bends in all directions. The combina- 
tion of fault planes that accommodate the 
areal strain is not often known, however. As 
in the dip-slip fault case (3) ,  a full model for 
the development of fault bend-related to- 
pography must necessarily include the pat- 
terns of coseismic uplift, interseismic relax- 
ation, and geomorphic redistribution of 
mass. An added complexity in the strike-slip 
case results from the long-term advection of 
the evolving topography relative to the bend 
(4). The resulting topography rises in alti- 
tude when the local rate of uplift exceeds the 
rate of lowering due to geomorphic process- 
es and decays when the geomorphic lower- 
ing dominates. 

The Santa Cruz Mountains provide an 
excellent location for the study of fault bend 
dynamics because we may infer long-term 
uplift rates from well-dated marine terraces, 
the fault geometry and slip rates are well 
constrained, a recent seismic uplift event has 

Earth Sciences Roard, Un~versity of California, Santa 
C m .  CA 95064. 

Fig. 1 .  Map of the Santa 
Cruz Mountains sur- 
rounding the slight bend 
in the San Andreas fault 
(SAF) in which the recent 
17 October 1989 earth- 
quake nucleated, as well as 
other major faults in the 
area (slip rates shown in 
millimeters per year; 
SBFZ, Sargent-Berrocal 
fault zone). Index map 
shows the SAF as it passes 
through California, and 
the Garlock fault. Note the 
broad bend in the SAF in 
the Monterey Bay region 
separating straight reaches 
of  the fault. Smaller bends 
are the Santa Cruz bend, 
(long dashed) and the 
Black Mountain bend 
(short dashed). Topo- 
graphic contours are 
shown at 200-m intervals 
starting at 300 m. Other 
topography (to the east of 
San Francisco Bay, and on 
the Monterey Peninsula) 
is not shown. Asterisks de- 
note positions of  geodetic 
stations occupied by the 
U.S. Geological Sunrcy in 
the aftermath of the Lorna Prieta earthquake. 

Andreas fault system. 
Locally, the San Andreas fault (SAF; Fig. 

1) slips at a rate of 12.2 * 3.9 d y r  (7, 8). 
The fault bends at several different-scales in 
the Santa Cnu, Mountains (9). In the region 
between San Juan Bautista and the northern 
San Francisco peninsula the SAF describes a 
broad bend with a wavelength of 100 km 
(Fig. 1). This bend is accomplished by 
several shorter bends with divergence angles 
of 8" to 10" and wavelengths of -10 krn. 
One of these (10") is centered north of Santa 
Cruz, the other at Black Mountain (8") just 
west of Los Altos Hills (Fig. 1). The rupture 
associated with the Loma Prieta earthquake 
was centered about the first of these bends. 

The Santa Cruz Mountains hug the SAF 
for -100 km (Fig. 1). The fault crosses the 
middle of the mountain range in a promi- 
nent double restraining bend of approxi- 
mately 3 km amplitude and 10 krn length; 
the northern range occurs west of the fault 
and the southern range occurs to the east. 
The highest topogrGhy in the northern 
range (Mount Bielawski, 985 m) occurs 
near the northern edge of this bend, whereas 

contour interval 200m 
starting at 300m 
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