
Growth and Erosion of Thin Solid Films 

Thin films that are grown by the process of sputtering are, 
by and large, quite unlike the smooth, featureless struc- 
tures that one might expect. In general, these films have a 
complicated surface morphology and an extended net- 
work of grooves and voids in their interiors. Such features 
can have a profound effect on the physical properties of a 
thin film. The surface irredarities and the bulk defects 
are the result of a growthoinstability due to competitive 
shadowing, an effect that also plays a role in geological 
processes such as erosion. For amorphous thin films, the 
shadow instability can be described by a remarkably simple 
model, which can be shown to reproduce many important 
observed characteristics of thin film morphology. 

M AN-MADE SOLID FILMS ARE UBIQUITOUS I N  A TECHNO- 

logical society. Everyday examples include "no-stick" 
coatings on frying pans, "no-glare" coatings on roadside 

signs, and "no-corrosion" coatings on garden tools. Less pedestrian, 
but not less important, examples include magnetic films for record- 
ing, conducting films for microelectronic contacts, and amorphous 
silicon films for photovoltaics. In the latter cases particularly, 
interest centers on films with thicknesses measured in the microme- 
ter range, that is, "thin" on a macroscopic scale but still quite "thick" 
on a microscopic scale. Moreover, it is common to give up single 
crystallinity in exchange for thickness uniformity over macroscopic 
lateral dimensions. Perforce, these films exhibit an intrinsic micro- 
structure that both depends on the details of fabrication and 
determines many of their physical properties ( I ) .  

A very common experimental technique used to produce films of 
this sort is known as sputtering (2). An energetic beam of particles 
(usually an inert gas) is directed at a bulk specimen of the material 
one wishes to deposit. The beam erodes this target, ejecting atoms 
that travel ballistically until they are deposited on a fixed substrate. 
The geometry can be arranged so that each point on the substrate 
receives flux either (in one extreme) from a fixed angle of incidence 
or (in another extreme) from all angles of incidence simultaneously. 
Moreover, one can easily imagine defocusing the original incident 
beam so that the particles incident on each point of the bulk target 
surface arrive from a range of angles as well. Surfaces that evolve 
under conditions of either sputter growth or sputter erosion exhibit 
characteristic morphologies that depend on the angular spread of 
the incident flux, the deposition rate, and the surface temperature. 
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The purpose of this article is to review recent progress in our 
theoretical understanding of this behavior and, in particular, to 
emphasize certain statistical properties of moving interfaces that 
have a bearing on related problems in fields as diverse as geology, 
horticulture, and optics. 

The ingredients essential to a proper theory of the morphological 
dynamics of sputter growth and erosion were understood qualita- 
tively in the early 1950s. Konig and Helwig (3) pointed out in the 
optics literature that geometrical shadowing of an incident beam by 
protruding parts of a growing surface profoundly affects the result- 
ing morphology, and Herring (4) emphasized in the metallurgical 
literature the importance of capillarity, or surface diffusion, as a 
driving force for morphological evolution. For the case of growth, 
precisely these factors have been invoked to explain the apparently 
"universal" classification scheme for thin-film microstructure illus- 
trated in Fig. 1 ( 5 ) .  In particular, it is argued qualitatively ( 6 )  that 
shadowing leads to the zone 1 morphology of low-density tapered 
columns with domed tops, giving way (by surface difision) to 
wider, smoother uniform columnar grains (zone 2) and finally (by 
bulk difision) to large bulk-like grains (zone 3).  Similarly, both 
shadowing and surface diffusion are important factors (7) in the 
evolution of rough "cone-like" surface topologies observed (8) 
during sputter erosion of contaminated surfaces. Repeated sputter- 
anneal cycles are, in fact, standard procedure for the preparation of 
"clean" surfaces for ultrahigh-vacuum studies (9). 

Some years ago, computer simulations of "sticlq." spheres con- 
strained to approach a substrate on straight-line ballistic paths 
quantitatively established atomic scale self-shadowing as a mecha- 
nism for the formation of voided columnar microstructures (10). 
More recently, very large-scale simulations of this ballistic aggrega- 
tion model revealed that the resulting deposits consist of quasi- 
fractal (1 1) tree-like structures riddled with holes on the atomic scale 
(12). Real coatings, by contrast, are smooth over distances less than 
approximately 10 nm, down to atomic scales-a range of two orders 
of magnitude. [The existence of surface variations on the atomic 
scale is, of course, a universal feature of all real surfaces (lo).] This 
underscores the importance of smoothing by surface difision, an 
effect that can be included only rather crudely in atomistic simula- 
tions (13). Moreover, it is hardly practical to follow the motion of 
individual atoms if one is interested in macroscopic morphological 
evolution. One is thus led to consider continuum models that 
relinquish atomicity in favor of predictive power over large length 
and time scales. 

A macroscopic description of growth and erosion, or both, often 
involves the construction of a partial differential equation to describe 
the time evolution of a surface profile h(x,t)  (Fig. 2). Carter (14) has 
reviewed a very elegant approach to this problem based on the 
construction of an eikonal equation (familiar from ray optics) for the 
motion of the (curved) surface and applied it most successfully to 
the case of sputter erosion. When the rate of erosion (or growth) of 
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Fig. 1. Morphological class&- 
cation of thin-film microstruc- 
ture as a function of substrate 
temperature (scaled to the 
melting point) (5). 

Substrate temperature (T/T,) 

Fig. 2. Typical surface profile h(x). 
Incident particles can reach the 
point x ballistically from all direc- - tions within the cone defined by the * - angles &(s) and Bz(s) (s is the arc 

C length along the surface). 

X 

1000 Lattice units 

a surface point is assumed to be constant, the method of characteris- 
tics can be used to predict the appearance of singularities (such as 
caustics) in the evolving surface. Kardar and co-workers (15) have 
advanced a version of this model specifically for the case of vapor 
deposition. However, by construction, this local theory contains no 
shadowing and so cannot lead to columnar microstructures. Until 
recently, columnar structures have been derived from continuum 
models only when microscopic information is built in at the 
monolayer level (1 6, 17). 

Growth with Shadowing 
A crude model for the growth of a grassy lawn nicely illustrates 

the dramatic effects of shadowing. Let us represent every blade of 
grass as a column on a lattice. Now suppose that each stalk grows at 
a rate proportional to the amount of light it receives at its tip. On a 
cloudless day, this amount will be proportional to the solid angle 
of sky that is not blocked by neighboring stalks. This growth rule 
is easy to study on a computer (18). Figure 3 shows the result for 
initial "seedlings" that differ in height by infinitesimally small 
amounts (for the case of a one-dimensional strip of grass). The 
shortest stalks quickly "lose" as they are overshadowed and choked 
off by their taller neighbors. The "winners" compete among them- 
selves for the available light until a limiting morphology is achieved 
that exhibits elements of both regularity and randomness. (Unat- 
tended lawns are indeed known to acquire an uneven appearance.) 

In this simple model, the regularity derives from the nature of the 
height distribution of columns. Let a be the unit of column height. 

Then, if there are N columns of height a, one finds that there are N/2 
columns of height 2a, N/4 columns of height 4a, and so forth. The 
final morphology nuns out to be "self-similar" and to exhibit 
"scaling" characteristics. This means that any small portion of Fig. 3 
that is rescaled (magnified) to full size is indistinguishable from the 
original pattern. Remarkably, actual sputter-grown solid films also 
appear to be self-similar (19), or, more precisely, they are self-similar 
down to some minimum size where, as noted earlier, surface 
diffusion takes over. 

To adequately account for this behavior, we require a growth 
algorithm that captures the effects of both shadowing and surface 
diffusion. A fairly realistic way to do this (taking no account of any 
atomistic effects) is the following (20). Each point on the surface is 
presumed to grow in the direction of the local surface normal A(s) at 
a rate 

a2K(s) 
v,(s) = R J(ci) . A(s) dci + D - 

~ I ( S )  as2 

In this expression, the shadow angles Bl(s) and B2(s) are defined in 
Fig. 2; R is the mean deposition rate, equal to the molecular flux, 
multiplied by the atomic volume of the species being deposited; and 
J(a) is a dimensionless vector that characterizes the angular depen- 
dence of the incident flux. Surface diffusion contributes to the 
growth rate by an amount equal to the divergence of the surface 
diffusion current, -D[a~(s)las], where ~ ( s )  is the surface curvature 
and r is the arc length along the surface. The constant D is 
proportional to the surface diffusion constant (21). In the absence of 
diffision, Eq. 1 has been extensively used in computer simulations 
of sputter deposition onto patterned substrates for microelectronics 
applications (22). 

Figure 4 illustrates the morphological evolution of a surface 
initially composed of three "nucleation sites," obtained by numerical 
evaluation of Eq. 1 for the case of uniform exposure (as for the 
grassy lawn) (23). The figure best represents the growth of an 
amorphous material, because we have neglected all effects of crystal- 
linity. At early times, before shadowing becomes important, each 
protrusion grows upward and outward in a manner reminiscent of a 
classical wave front. This is consistent with the eikonal equation 
analysis (14). Later, all the characteristic features of a zone 1 
microstructure appear: tapered columns with domed tops interlaced 
with a fine void network. 

The natural selection process demonstrated by the simple grass 
model is evident: initial protrusions that are slightly larger than their 
neighbors tend to "win." Does growth according to Eq. 1 exhibit 
self-similar behavior, like the grass model? It is not known for 
certain because the computations required to test the long-time 
statistical properties simply take too much time. If, however, we 
approximate Eq. 1 by the eikonal equation (or Huygens principle) 
(14), then self-similar morphologies are found (24). 

The initial conditions clearly play a fundamental role in Fig. 4 (23, 
24). As mentioned, the shadow mechanism magnifies initial surface 
roughness. As a demonstration of the mathematical importance of 
the initial conditions (23), note that Eq. 1 contains a basic length 
scale to and a basic time scale to defined by 

We now can define a dimensionless length Uto  and a dimensionless 
time tho. Rewriting Eq. 1 in these dimensionless variables leads to a 
parameter-free evolution equation (namely, Eq. 1 with D = R = 1). 
Accordingly, the only way to obtain fundamentally different growth 
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Fig. 4. Growth of a surface accord- 
ing to Eq. 1 [from (23)l. 

morphologies, that is, not related by a trivial change of scale, is to 
~ ~ a r y  the morphology of the initial surface. The initial conditions 
were also found to be crucially important for growth controlled by 
the Huygens principle (24). 

The foregoing immediately implies that we require a quantitative 
way to characterize the initial conditions. We will not do this 
directly for Eq. 1. Instead, we construct a simpler equation of 
motion that is, both mathematically and numerically, more tracta- 
ble. In particular, we generalize the strictly columnar grass model to 
include the effects of surface diffusion (not present in real grass). The 
resulting equation of motion for the coating profile is (18): 

where we have already passed to dimensionless variables. Equation 4 
differs from Eq. 1 in a number of respects (20) but still captures the 
competition benveen shadowing and diffusion. Moreover, its nu- 
merical simulation is far less computer-intensive. 

To characterize the initial state of the surface, we introduce two 
length scales. First, let to be the lateral correlation length of the 
initial surface; that is, the initial surface is smooth on length scales 
less than C0 and rough on length scales greater than Co. For instance, 
C0 could be the size of microcrystallites in the amorphous film. Next, 
let Ah be the root mean square (rms) of the height fluctuations of 
the initial surface. Together, Ah and Co provide an (approximate) 
characterization of the statistical properti& of the initial surface. It 
follows from Eq. 4 that, for the initial surface, the second term can 
be estimated as to3 (Ah/<04). NOW let A0 - [(e2) - ( o ) ~ ] " ~  be the rms 
of the fluctuations in the exposure angle. Because 0 varies benveen 71. 

and 71. - 2 tan-' (AhlCO), we can estimate A0 = tan-' Ah/Co. The 
(time-dependent) ratio 9 of the surface diffusion term in Eq. 1 to 
the rms fluctuations in the deposition current then is roughly 

9 (2)' [ Ah/," ] 
tan-' (Ah/CO) 

If P is large compared to unity, we expect surface diffusion to largely 
erase the initial structure, whereas, if P is small compared to unity, 
are expect magnification through shadowing of the initial surface 
roughness. 

Figure 5 illustrates the growth profile for a case in which the 
initial P value, Po,  was equal to 1, that is, there is nonnegligible 
surface diffusion. The initial surface was taken as a collection of 
columns of width C0 and rms height Ah. Characteristically, the 
surface remains quite flat for some induction period before columns 
begin to appear. Compared to the pattern in Fig. 3, there are fewer 
and wider columns. A convenient measure of the statistical proper- 
ties of such a surface is the coverage c(h), defined simply as the 
fraction of area (or length in the one-dimensional examples dis- 
cussed here) occupied by coating in a layer parallel to the substrate at 
a height benveen h and h + dh. For a smooth, high-quality film of 
uniform thickness, c(h) drops abruptly from unity to zero when 
h = h,. Conversely, c(h) is expected to fall smoothly to zero for a 

Fig. 5. Growth pattern for 
model including surface 
(Eq. 4). 

the grass 
I th s ion  

1000 Lattice units 

low-quality (rough) surface. As a benchmark, we note that 
c(h) m llh for the maximally rough self-similar surface of Fig. 3. 

Numerical studies indicate (18) that, if the control parameter Po is 
small compared to unity, the film evolves smoothly up to an 
induction height h*. For h 2 h*, the film roughens and c(h) a: l/hP 
for h > h*. The exponent p has a value between 1 and 2 depending 
on Po. For very large h, there is a cutoff for this power-law regime. 
As for the original grass model, the surface profile is self-similar. 

If, on the other hand, Po is large compared to unity, then, as long 
as the film could be follouied by us on the computer, c(h) = 1 up to 
a film height h* = t. For h > h*, c(h) dropped rapidly. The width of 
the surface did, however, slowly increase in time, so we cannot rule 
out that for very late times a self-similar mountain surface would 
appear. With this caveat in mind, it indeed appears that Po is 
suitable as a characterization for the initial surface. Finally, if we 
study the time dependence of P(t) ,  we find that P(t) decreases with 
time if Po > 1, whereas it increases with time if Po < 1. For late 
times, B(t) always is of order one. This indicates that (at least for the 
growth according to Eq. 4) ultimately the surface always achieves a 
balance benveen surface diffusion and shadowing. 

The fact that the surface morphology is very sensitive to initial 
conditions is somewhat reminiscent of nonlinear classical mechanics 
problems that exhibit chaos (25). We also can think of the discre- 
tized version of Eq. 4 as a nonlocal cellular automaton. Indeed, 
cellular automata are known to be sensitive to the initial state and to 
evolve self-similar or homogeneous growth patterns (26). 

The transition from a smooth surface (for Po 2 1) to a rough 
surface (for Po 5 1) corresponds to a "growth-induced" roughen- 
ing transition (as opposed to a temperature-induced roughening 
transition), a subject of great interest in the recent literature (27). 
However, even for our simplified model (Eq. 4), we cannot follow 
the surface to late times because of numerical limitations. In 
particular, it is difficult to distinguish numerically a slow coarsening 
process that is sensitive to initial conditions from a true growth- 
induced roughening transition. 

Erosion 
The action of wind and rain on a mountain range is the analog to 

the grassy lawn for the problem of the evolution of a solid surface 
under energetic ion bombardment. Erosion corresponds to negative 
values for the parameter R in Eq. 1, while landslides play the role of 
surface difision. In contrast to growth, shadowing always leads to 
surface smoothing during erosion. It is particularly effective when 
the topography is very rough, because deep valleys are well shielded 
from the elements. Typically, erosion acts as a smoothing mecha- 
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nism (even in the absence of shadowing), because, according to Eq. 
1, each bit of hilly area erodes along the direction of the local surface 
normal (Huygens principle) (28). Explicit calculations of soil ero- 
sion exploiting this fact have appeared in the gmmorphology 
literature (29), but the role of shadowing is less well understood. 

For the case of true sputter erosion (in the absence of surface 
diffusion), extensive numerical simulations based on a generalized 
Huygens principle of wave propagation,have been performed with 
particular emphasis on the evolution of sharp corners and edges in 
the initial surface profile (30). Using Eq. 1, Kubby and Siege1 (31) 
studied the e tk t s  of surface diffusion on the erosion of maaosco~ic 
features and obtained results that compare favorably with &ri- 
mental results. In what follows, we shall emphasize the microscopic 
statistical aspects of the problem. To begin, Fig. 6A illustrates 
typical erosion dynamics obtained by numerical integration of Eq. 4 
for the case of uniform exposure to an (isotropic) incident flux. A 
rather hilly starting surface has been chosen so that both shadowing 
and capillarity are significant. Surface diffusion provides smoothing 
over short length scales, and shadowing induces preferential erosion 
of all local maxima. 

We now introduce the fact that the incident flux unavoidablv 
exhibits statistical fluctuations around its average value (R) due th 
the fact that the beam actually consists of discrete atoms. This 
phenomenon, known as "shot noise," can be modeled adequately 
simply by the addition of a Gaussian random variable q(x,t) to the 
right side of Eq. 4. The effect of this change can be quite profound. 
Take the case of an initially flat surface where (in the absence of 
noise) one obtains perfectly uniform erosion. In the presence of shot 
noise, something entirely different occurs (Fig. 6B): large-scale 
mountain-like structures evolve at long times. Quahtatively, it is 
dear that any energetic incident beam continually produces surface 
damage, mostly on the atomic scale. Occasionally, larger structures 
are produced as a result of shot noise fluctuations. Sputter bombard- 
ment slowly erodes these structures, but other, new ones are 
constantly being produced. Eventually, a steady state is reached, 
precisely as observed (32) in detailed experiments addressed to the 
evolution ofthe "cone-like" structures during erosion noted earlier. 

More quantitatively, one can do a Fourier analysis of the e m d q  
surfice profile h(x,t) and study instead the time evolution of each 
component hq(t) characterized by a wave vector q. When the slopes 
of the mountain struaures are not too large, the results of such an 
analysis can be calculated from linear response theory applied to Eq. 
4 with R < 0. 

where a is a numerical constant and the Fourier transform of the 

Fig. 7. (A) Scanning tunncllng m i m p e  image of a flat carbon &ce 
after exposun to 5-keV ions fbr 15 min at a beam current of R = 6.4 p& 
(B) same as (A) but afm crposun fbr 150 min at R = 0.64 pA. 

standard deviation of the random variable (Iqql2) Q R. 
Equation 6 tells us two things. First, for t + a, it directly implies 

steady-state roughness of large (lateral) scale. To see this, start with a 
surface charactew by small-amplitude, noise-induced roughness 
of all wavelengths. For large t, the long-wavelength Fourier compo- 
nents increase in amplitude as a result of divergence of (&(=)I2) 
when q + 0. (This divergence is in reality limited by finite-size 

and nonlinear corrections to linear response theory.) 
Equation 6 also makes clear that the height fluctuations depend 

on R only in the combinations D/R and Rt. This fact (another 
consequence of the rescahg propemes of our model) means that 
variations in surface diffusion can be simulated by reciprocal changes 
in R and t so that the product Rt remains fixed. We have tested this 
prediction for the sputter erosion case by means of scanning 
tunnehng microscopy (STM) (33). Figure 7A is an image of an 
initially flat carbon d a c e  roughened by exposure to 5-keV Ar+ 
ions for t = 15 min at a beam current of R = 6.4 pA. Figure 7B 
displays the image obtained for a flat carbon surface bombarded for 
t = 150 min with R = 0.64 pA. 

In accordance with Eq. 6, the erosion process has produced large- 
scale structures. Furthermore, the change in erosion rate between 
Figs. 7A and 7B should be equivalent to keeping R and t fixed while 
increasing D by a factor of 10 accordmg to Eq. 6. This in turn means 
that the short-scale structure should be erased in going from Fig. 7A 
to Fig. 7B while the large-scale structure should be m e e d .  
Inspection of Fig. 7 shows that this is the case, at least qualitatively. 

Another useful measure of interface roughness is the interfacial 
width W(L) defined for a sample of lateral dimension L (34). For 
columnar models, W(L) is simply a mean square average: 

where N is the total number of columns. The long-time behavior of 
this quantity for an eroding surface follows from Eq. 4 as 

Noise-induced roughness thus diverges as L + m. But, because the 
logarithm increases so slowly, typical laboratory samples actually 
will appear reasonably smooth. It is interesting to contrast this 
behavior with the behavior of the interface width for the case of 
growth. There, one finds that W(L) a LX where 

x = (2 - p)/2 
Fig. 6. (A) Erosion of an initially rough surfkc according to Eq. 4; (B) (9) 
erosion of an iniaaUy flat surface indudmg shot noise in the inadent flow. and p is the growth exponent or c(h) defined earlier. The rapid 
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power-law divergence of W(L) directly reflects the appearance of 
columnar microstructures due to shadowing. It also explains why we 
did not introduce shot noise in the context of growth. These 
fluctuations introduce only a negligible perturbation to the rough- 
ness induced by shadowing. 

Concluding Remarks 
In this article, we have discussed a macroscopic theoretical 

approach to the morphological evolution of thin films grown or 
eroded by sputtering. Particular emphasis has been placed on the 
effects of shadowing, shot noise, and the statistical properties of 
these films. To motivate our discussion, we noted the similarity of 
our problem both to the growth of grass and to the erosion of 
mountains. To see the connection to still other problems, it is useful 
to examine results obtained in the statistical mechanics literature for 
growth onto a flat substrate according to the so-called Eden (35) and 
diffusion-limited aggregation (DLA) (12) algorithms. In the first of 
these, new particles are attached sequentially to randomly chosen 
surface sites of the growing film. A compact but rough interface 
results. In the second, new particles released from above perform a 
random walk and join the film at their first point of contact. The 
growth surface is very ramified and is, in fact, fractal. 

As defined, both of these models include shot noise but neither 
has a relaxation (smoothing) mechanism. Conversely, we have 
argued that the morphologies obtained by sputter deposition de- 
pend strongly on surface diffusion but only weakly on noise. To 
facilitate comparison, we take advantage of the fact that the behav- 
iors of both DLA and the Eden model are known if noise is 
suppressed and relaxation is introduced. (The continuum limit of 
the noise-free Eden model is just the Huygens principle). For the 
Eden case, thought to be relevant to a common operating limit of 
the chemical vapor deposition process (36), all initial surfaces 
ultimately evolve into a collection of parabolic shock fronts, whose 
curvature decreases uniformly as time proceeds (24). The asymptotic 
surface is flat. Conversely, DLA modified in this manner yields (37) 
nonfractal finger-like morphologies. An example is provided by 
"viscous fingering," when air displaces a fluid trapped between two 
closely spaced glass panes (38). As the interface moves, larger fingers 
suppress smaller fingers until, asymptotically, only one finger re- 
mains. 

Examination of Figs. 4 and 5 reveals that shadow growth exhibits 
characteristics of both the Eden and DLA models in the appropriate 
limits. At early times, before shadowing becomes important, surface 
features grow upward and outward like an Eden interface. But, as 
competition for incident flux ensues, there is a crossover to the 
finger-like morphology of the fluid problem and asymptotic survival 
by just a few columns. Evidently, there is a deep connection between 
the nonlocal shadowing that obtains for ballistic incident flux and 
the nonlocal screening that occurs for difisive particle transport. 

A quantitative comparison between the theory discussed here and 
experiment remains to be done. In particular, it is not known 
whether 9 is indeed the control parameter for the qualiry of a film. 
Nonetheless, as mentioned earlier, there is experimental evidence 
(19) that scaling persists for ballistic deposition, at least in some 
situations. 

We believe that the type of analysis discussed here for the growth 
and erosion of thin films k a v  be us-eful in other contexts as will. For 
example, it is tempting to speculate whether the interfacial width 
W(L) of the canopy of a tropical rain forest (on the assumption that 
growth is limited by competition for sunlight) would exhibit power- 
law behavior. A statistical approach to the properties of eroding 
surfaces may also be interesting in the context of sandblasting, 
chemical etching and (perhaps) acid rain. Indeed, one can adopt a 
morphological perspective for each of the many examples in nature 
where growth or death occurs by a simple nutrient or poison 
transport mechanism. From this point of view, the rather modest 
case of sputtering treated here is merely representative. 
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