
hvdrolysis is not essential for at least some T . . 
cell fUncTi0n~. and that alternative second 
messenger systems that are coupled to the 
TCR-CD3 complex are likely. 
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Structural Mutations of the T Cell Receptor 5 Chain 
and Its Role in T Cell Activation 

T cell hybridomas that express 55, but not 1;q, dimers in their T cell receptors (TCRs) 
produce interleukin-2 (IL-2) and undergo an inhibition of spontaneous growth when 
activated by antigen, antibodies to the receptor, or antibodies to Thy-1. Hybridomas 
without 1; and q were reconstituted with mutated 1; chains. Cytoplasmic truncations of 
up to 40% of the 1; molecule reconstituted normal surface assembly of TCRs, but 
antigen-induced IL-2 secretion and growth inhibition were lost. In contrast, cross- 
linking antibodies to the TCR activated these cells. A point mutation conferred the 
same signaling phenotype as did the truncations and caused defective antigen-induced 
tyrosine kinase activation. Thus, 5 allows the binding of antigenlmajor histocompati- 
bility complex (MHC) to a p  to effect TCR signaling. 

T HE TCR IS A MULTIMERIC COM- 

plex that recognizes peptide antigens 
bound to MHC-encoded proteins 

on the surface of antigen-presenting cells. 

S. J .  Frank, D. G. Orlog, R. D. Klausner. Cell Riolog). 
and Metablism Branch, National Institute of Child 
Health and Hunlan Development. National Institutrs of 
Health, Rethesda, MD 20892. 
B. R. Niklinska, M.  Mertep, J .  D .  Ashwell, Riological 
Respnse Moditiers Program, National Cancer Institute. 
National Institutes of Health, Bethesda, MD 20892. 

Three types of polypeptide chain make up 
the subunits of this receptor. The disulfide- 
linked a p  heterodimer forms the clonotypic 
antigen recognition unit, while the invariant 
chains of CD3, consisting of y, 6, E, and 5 
and q, are presumably responsible for cou- 
pling ligand binding to signaling pathways 
that result in T cell activation and the elabo- 
ration of the cellular immune response. The 
5 chain is a 16-kD nonglycosylat-ed protein 
that exists in nvo forms in the receptor 

complex (1, 2). Eighty to  90% of receptors 
contain 5 homodimers, while the remainder 
contain 5 disulfide llnked to the 22-kD 
chain, a distinct protein that is related to 5 
(3). The 5 chain is stmcnlrally unrelated to  
the three homologous C D 3  chains. The 
distinctness of 5 is further emphasized by the 
finding that it is expressed in the absence of 
CD3 on NK cells (4) .  There it appears to  be 
part of a complex with CD16, a receptor for 
immunnglobulin G (IgG) (j), that is capa- 
ble of transducing signals. These obsenra- 
tions suggest that < may represent an even 
more widely used coupling molecule than 
formerly thought. 

Variants of the antigen-specific murine T 
cell hybridoma 2B4.11 have been isolated 
that fail to  synthesize any detectable < or 
chains and express only 2 to  5% of surface 
TCR found on  the parental cells (6). When 
the full-length < cDNA is transfected into 
these cells, a structurdy normal T C R  is 
transported to  the surface (7) and antigen 
induces interle~llun-2 (IL-2) production and 
a Gl/S cell cycle block (growth inhibition). 
Antigen does not induce apoptosis in these 
?-deficient cells (8). and, as previously re- 
ported, the lack of q correlated with the 
absence of antigen-induced phosphoinosi- 
tide hvdrolysis (9). Because these reconsti- 
tuted cells could signal to  produce IL-2 in 
the absence of any detectable T, lve were 
encouraged to analyze further the signaling 
role of 5 by reconstitution uslng cDNAs 
encoding structurall\, altered 5 chains. Two 
truncated proteins, designated CT108 and 
CT150, were designed by changing the 
codons for residues G I U ' ~ ~  and ~ y s ' ~ '  t o  
termination codons (Fig. 1A) (10) .  The 
products of these cDNAs and the full-length 
5 (FL), lvere analyzed after transient trans- 
fection into COS cells by metabolic labeling 
and immunoprecipitation with antibodies to  
a 5 peptide (11); the transfectants expressed 
eitherAfull-length < or 5 chains \$th the 
predicted truncations (Fig. 1B). 

The 1: cDNA constructs were transfected 
by electroporation into the (?-deficient vari- 
ant of 2B4.11, named 2M.2. The presence 
of the predicted < proteins in these transfor- 
mants , a s  verified by immunoprecipitation 
and immunoblotting with the antibody t o  5 
peptide 2 (Fig. 2A). The full-length trans- 
formant produced a 16-kD < chain, whereas 
the only 5 chains detected in CT150 and 
CT108 were consistent with the predicted 
sizes of the proteins encoded by the mutated 
cDNAs. In addition. the i~nmunoblotting 
verified the absence of q in these transfor- 
mants (Fig. 2 4 .  The transformants were 
iodinated to  evaluate the stnictural compo- 
nents of the assembled surface com~lexes. 
After immunoprecipitation ~71th monoclo- 
nal antibodies (MAbs) to  the a or E chains, 
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or with an antiserum to a t; peptide, and 
separation of TCR proteins on 2D diagonal 
geh, we found that homodimers of 5 were 
on the surface of the respective aansfor- 
mants. In all cases the t chains were assem- 
bled normally into surface complexes. The 
role of !, in surface expression of the TCR 
complex involves the sparing of the a p y b  
pentameric structure h m  rapid lysosomal 
degradation (7, 12). When !, is present, the 
heptameric complex is targeted to the plas- 
ma membrane. The TCR surface expression 
in CTlO8 shows that 40% of the cytoplas- 
mic tail of 5 can be removed without alter- 
ing this targeting function. 

We investigated signal transduction of 
TCRs containing truncated ( chains by as- 
saying IL-2 production and the inhibition of 
spontaneous growth. Stimulation of FL, 
CT108, and a 1 5 0  cells with antigen re- 
vealed a hierarchy of I L 2  production (Fig. 
3A). FL cells generated detectable IL-2 
when stimulated with as little as 1 phi  
pigeon cymhrorne c hgment 81-104 
[PC€ (81-104)]. CT150 cells produced lit- 

tle IL2, and only at relatively high antigen 
concentrations. CT108 cdls consistently 
produced no IL2, even with antigen con- 
centrations of 30 phi. All three cells were 
responsive to the phannacologic inducers of 
IL-2, phorbol esters plus calcium ionophore 
(13). Stimulation with an immobilized MAb 
to CD3, 145-2C11 (2Cll), gave &rent 
results (Fig. 3B). FL cells still produced the 
most IL-2, with plateau levels within two- 
fold of that induced by antigen. In contrast 
to antigen, 2Cll  induced both CT150 and 
CT108 cdls to produce easily detectable IL- 
2, although less than FL cells (maximal units 
produced by CT150 and CT108 cell were 
15 to 20% of that produced by FL). Where- 
as CT108 cells never produced I L 2  when 
stimulated with antigen, they were at least as 
good, if not better, than CT150 when re- 
sponding to MAb against CD3. The dose 
response to 2Cll  was essentially identical 
for all three cells. The different pattern of 
response to antigen and 2Cl l  could be 
because the h e r  binds a@ and the latter 
binds CD3-c. Alternatively, cross-linking 

m. 1. (A) Map of 1; mutations. A 

dCduEad acid vce QSPGLLDPItW3YLLDGILFIYGVIITALYLRAKPSRSAE 60 ofthe mature native murine I chaia 
is shown (the 21-midue leader sc 
quence is omitted) (19). Trunca- 2 

TARNLPDPNQLYNELNLGRREEYDVLE-PEMGGKQ 100 
tions at residues 108 (CT1081 and 
150 (CT150) with tamination co- - t 3 dons mh the ~l~ (E) QRRRNPQEGVYNALQm-YSEIGTKGERRRGKGHDG 140 

and L~ (K), kspectively, arc in'&: & 
v 

. 
by ' arrows. point- mutations L , P G ~ ~ T ~ ~ T ! ~ - D A L A Q T L A ~ R  164 

(GV135 and KR1502 changing R 
residues Glyl" m Val1' and LyslsO 
m ArgIM are indicated by place- 
ment of the abbreviation for the B =DNA FL CT150 CT108 
mutated residue below that for the 
native residue. Pcptides 5 3 ,  and 4, Antiserum NS 3 2 4 NS 3 2 4 NS 3 2 4 

m which antisera were made. are 
indicated by solid lines above the 
included residues. The transman- 4 2- 
brane region is underlined. M13- 
based, ohgonudcotidc-directed NR 
sie-specific mumgenesis was done 2 6- 

with the Bio-Rad Mumgene Kit 
and the nsulting mutant 5 cDNAs 17.5- 
wcr~ d ~ e d  by didcoxy SC~UC~C- 1 4 -  
ing. T k  mutant cDNAs (or the 
full-length native t; cDNA) were 
cloned into the pmL (Pharmacia) 
and pmE0 (21) (FL, CT108, and 26-  
CT150) or RSV.SNE0 (GV135 
and KR150) expression vectors and R 17.5- 
the entire protcin-coding regions of 
the~e COnSmlCtS Were rrs~q~enccd 1 4 -  

m verify the presence of only the 
intended mutations &re transfec- 6 .2 -  
tion. (B) Expression of m c a n d  t; 
chains in COS-1 cells. The cDNAs (10 pg) encodq FL, CT108, or CT150 in thc pSVL apmsion 
vcctor were transfccted by the calcium phosphate precipitation method (22) into COS-1& (one 150- 
mm2 dish per transfecdon). Thc cells wax treated with 5 mM sodium butyrate for 18 hours beginning 
24 hours after transfxtion and were thcn metabolically labeled with [3S]mcthi~nine for 45 min. After 
solubilization in 0.5% (whr) Triton X-100, 0.3 M NaCI, 50 mM tris-HCI, pH 7.4, and protcase 
inhibitors, qual volumes of this labded lysate wcrc immunopdpitated with antibodies m t; peptides 2 
(directed at residues 88-101 oft;), 3 (residues 132-144), and 4 (residues 151-164), and a normal 
rabbit serum (NS). Eluates wcrc divided and separated either nonreduced (NR) or reduced (R) on 15% 
aaylaide gcls and exposed by aumradiography. 

with antibodies may be qualitatively &r- 
ent from occupying the TCR with ligand. 
To test this, an immobilized MAb to the a 
subunit A2B4-2 was used as a stimulant; 
this reagent stimulated similar amounts of 
IL-2 production h m  all of the cell lines. 
H57-597 (14) (H57), a MAb to ap, stimu- 
lated a pattern of I L 2  production indistin- 
guishable h m  A2B42 (13). G7, a mito- 
genic MAb to Thy-1, stimulated I L 2  pro- 
duction h m  T cells, although the maximal 
levels it can generate h m  2B4.11 are lower 
than those ekited by antigen or antibodies 
to the TCR (6). G7 is unusual in that it does 
not require external cross-linking to activate 
the cells (15). In contrast to the antibodies 
to the TCR, G7 caused only the FL cells to 
produce I L 2  (Fig. 3D). In addition, we 
tested the response of the FL and CT108 
cells to the "superantigenb staphylococcal 
enterotoxin B, which reacts with T cell 
receptors on the basis of Vg rather than 
antigen specificity (16). FL cells produced 
readily detectable amounts of IL-2 in re- 
sponse to this stimulus, whereas CT108 
produced no I L 2  at any concentration up 
to 1 of the enterotoxin per milliliter (13). 
The inhibition of growth after TCR stimu- 
lation is another madmation of T cell 
activation in these transfbrmed cells (17). 
Antigen caused significant growth inhibi- 
tion in FL cdls (Fig. 3E). CT150 cells were 
slightly inhibited, and only at high concen- 
trations of antigen, whereas CT108 cells 
were not inhibited at all. In contrast to the 
results with antigen, stimulation with im- 
m o b i i  antibodies to T cell receptor (Fig. 
3, F and G) caused each of the cells to slow 
their grow&. The e f k t s  of the antibodies 
on the cWerent transfonnants were identical 
in magnitude and concentration depen- 
dence. 

The eEea oft truncation on the ability of 
ligand to induce I L 2  d o n  or growth 
inhibition is most likely a consequence of 
inadequate or absent signal transduction. 
These cells, which lack q, show no phospha- 
tidylinositol (PI) breakdown in response to 
antigen plus MHC (13). However, q is not 
required for the activation of the T cell 
&ptor+ulated protein tyrosine kinase 
pathway (9), as monitored by the tyroshe 
phosphorylation of !, itself (18). To assess - .  
;his, we made point mutations of the region 
of { implicated as functional by the m c a -  
tion mutants, particularly in the region that 
contains a possible consensus binding se- 
quence for nudeotides (Gly-X-Gly-X-X-Gly 
. . . Ala-X-Lys) found between amino acids 
135 and 150 (19). We have replaced L ~ S ' ~  
with Arg with no e l k t  on T-cell m&ptor 
function (1 3). L ~ S ' ~  would be analogous to 
the critical amino acid for phosphotransfer- 
ase activity fbund in most kin- (20). 
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However, when ~ 1 ~ " '  was replaced with 
Val (GV135), the activation phenotype was 
similar to that of the auncations (Fig. 4 4 .  
Treatment of this cell with antigen or anti- 
body to the Thy-1 d t e d  in minimal IL-2 
output (up to 1 unit), while antibodies to 
TCR elicited appreciable IG2. EL cells 
again responded to antigen, antibody to 
Thy-1, and antibody to the T cell receptor 
aoss-linking with robust IG2 output (13). 
The altered 5 cDNA in GV135 st i l l  encodes 
a full-length protein containing all of the 
Tyr residues. Both EL and GV135 are Tyr- 
phosphorylated in response to 2Cl1, with 
the expeaed molecular size shift h m  16 to 
21 kD (Fig. 4B). Thus, the GV135 mutant 
5 chain is a substrate for the tyrosine kinase. 
In contrast, only the wild-type 5 is Tyr- 
phosphorylated in response to antigen. 
Whereas antigen is a less potent stimulus of 
5 phosphotylation than 2Cl1, even overex- 
posure ofthe autoradiograms Med to reveal 
any antigen-induced 5 phosphorylation in 
GV135. Although it is st i l l  unknown 
whether 5 can bind nudmtides, these results 
show that this region of the cytoplasmic tail 

is important to allow 5 to transduce the 
occupancy of the receptor to cell activation. 

Could the difFecence in response to anti- 
gen and antibodies to the T cell receptor 
between EL and the truncated 5 mutants 
reflect merely a diffxence in the p m c y  of 
the stimuli? This explanation can be rejected 
on several grounds. Although the maximal 
FL IL-2 output to 2Cl l  was approximately 
twofbld greater than that induced by anti- 
gen (-200 units compared to -100 units), 
its maximal response to A2B4-2 was indis- 
tinguishable fiom antigen, indicating a lack 
of fundamental difference in the potency of 
the stimuli. Dose-response profiles for each 
of the stimuli indicated that the full-length 
and mutant receptor (CT108, for example) 
d u c e d  both the 2Cll- and A2B4-2- 
induced activating signals qually well. The 
antigen-induced IL-2 dose-response profiles 
for FL and CT108, however, were funda- 
mentally different with at least a 100-fold 
(and perhaps infinite) shift in CT108 re- 
sponsiveness (no detectable I L 2  output at 
the highest antigen concentration). The 
growth-inhibition assay exhibited the same 

A CT CT B NU 

284 2M.2 108 150 FL Cell --- m 

* 
17.5 - 

dichotomy with CT108 and EL., displaying 
identical dose-reswnse mfiles for antibod- 
ies to the T cell r&pto; but CT108 lacking 
growth inhibition at any antigen concentra- 
tion. 

These d t s  lead us to propose a two- 
state model for the activation of the T cell 
rrceptor by physiologic ligand. Binding of 
the T cell receptor to antigeniMHC sauc- 
turally alters the receptor in a manner that 
does not lead to activation without the 
concerted function of the cytoplasmic tail of 
5. Whatever function 5 pecfbnns appears to 
be bypassed by direct external cross-linking 
of the T cell receptor by antibodies to the T 
cell receptor. We hypothesize that, in the 
prescnce of an intact 4 chain, the activated 
state of the T cell receptor may be identical 
regardless of the stimulus. According to this 
model, the role of 5 is not to couple to 
second messenger-generating systems, but 
rather to complete the ligand-induced sauc- 
tural --in the Geptor, perhaps by 
mediating internal cross-hkhg of the re- 
ceptor to cytoskeletal elements. Such a mod- 
el does not claim that ligand does not induce 

1 4 -  1 4 -  

6.2 - 
6.2-  f 

6.2- 

Flg. 2. (A) Truncated I; expression in transfected 
21ci.2 cells. 2M.2 (8) is a spontaneous (nonrnuta- 
genized) 5 loss variant of the 2R4.11 antigen- NR NR 
specific hvbridoma. This variant makes no detcct- + FL CT 150 gTL- - - .= - : - - - -- - able message or protein (as assessed by metabol- 
ic labeling) ( 13) and expresses onlv approximatelv 
5% of the surface TCR of the parental 2B4.11 
cell. 2M.2 cells were transfected by electropora- 
tion [as in (7) 1 with the linearized pfNEO expres- 
sion plasmid (20 ~ g )  that contained cDNAs for 
FL, CT108, or CT150. Stable transformants were DC 
selected by growth in G418-containing medium 

-c 
17.5- 

(1  mg/ml) and screened for surface TCR expres- 17 .5 -  Y 
sion by flow ~~of luorometr) .  with the MAb to 
TCRa, A2R4-2. Stable lines or subclones express- 14 -  

ing levels of surface TCR roughly equivalent 
1 4 -  

(within a factor of 2) to the parental 2B4.11 ceU 6.2- 
arere analyzed. Equal numbers of 2B4.11, 2M.2, 6.2  - 
CT108, CT150, and FL cells were solubilized in 
0.5% (wlv) Triton X-100, 0.3 M NaCI, and 50 mM tris-HC1, pH 7.4, and complexes. The 2B4.11, CTlO8, CT150, and FL cells were labeled with '251 
centrifuged. The 5 proteins in the supernatant were irnrnunoprecipitated by the lactoperoxidase-glucose oxidase method under conditions that favor 
with antiserum to 5 peptide 2, resolved on a 15% reducing SDS-polvacnl- intact cell labeling (I). After solubilization, TCR complexes were immuno- 
arnide gel, transferred to nitrocellulose, and immunoblotted with the same precipitated with the MAb to CD3,2C11, and resolved by 2D nonreducing 
antiserum and "I-labeled protein A. As this serum reacts with both 5 and +I (NR)-reducing (R) SDS-polyacrylamide gel electrophoresis. The positions 
( I  I), the position of q in 2R4.11 cells is indicated by an asterisk. Note the of the TCR and CD3 chains as well as full-length and truncated I; chains are 
absence of 6 in 2M.2; we estimate that we could readily detect 0.1% of the indicated. Precipitations with antiserum to I; peptide 2 also showed all the 
parental level of I;. (B) Truncated 5 chains assemble into surface TCR indicated chains. 
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Flg. 3. Activation-induced I L 2  
production and pwth inhibition. 
IL-2 production: 2 x 10' FL (sol- 
id circle), CT15O (open square), or e 80 CTlO8 cdls (open cirde) were in- $2  
abated with (A) 2 X 10' ircadiat- 6 j 60 
ed (10,000 a d )  LK 35.2 I-Ek- E 
beanng B lymphoma cells (23) in $ S 40 
the p m c e  of the indicated con- % 20 
centcations of PCc (81-104), (8) 
plastic wells coated with the indi- 
cated concentration of MAb 2Cl1, 1 3 10 30 
(C) plastic wells coated with the PCC 81-104 (pM) 
indicated concentration of MAb 
A2B4-2 to the TCRa, or (D) the indicated concentration of soluble MAb G7 
to Thy-1. Mtcr 24 hours, samples of supematant were removed and I L 2  
content was determined (17). Growth inhibition: After the removal of 
supematant for IL-2 assay, the T hybrid- cells activated with (E) antigen, 
(F) immobilized 2Cl1, or (Q) i m m o b W  A2B4-2 were assayed for their 
ability to incorporate [3H]thymidine (17). For each assay (A to G), at least 

th=P-"p""" yielded similar results. Fluorescence-activated cell 
sorter analysis o FL and CT108 cells showed that both have the following 
phenotype: CD4-, CD8-, CD2-, LFA 1+, Thy-l+, CD45+, TCR+. The 
intensity of mining for each of the latter fbur markers was comparable for 
both cell types. 

d&e for each typc of stimdus; for simplicity, Antinen I 

Flg. 4. (A) GV135 cells (2 x 10') wen incubat- A 
ed with phorbol myrime acetate (PMA) (10 
@ml) and various amounts of ionomycin, or 
various amounts ofh4Abs to Thy-1 (G7), TCRap Anti-CD3 
(H57), TCRa (A2B4-2), CD3-e (2Cll), or anti- 
gen [2 X 10' irradiated I,K 35.2 cells plus PCc 2 Antt-ap 
(81-104)]. IL-2 production was measured as in 2 
Fig. 3. A full concentration-dependence curve was Ant'-a 

. .. . .. 
only the d response in each group is 

a - 

shown. (B) Tyrosine kinase activation in GV135. lonomycin PMA+ ! 
Equal numbers of FL or GV135 cells were incu- 
bated at 37°C with LK 35.2 B cells TT:B a- 0 5 10 I5 20 25 

ti0 = 2 : 1) and were unstimulated (u) dr h u -  Maximal 11-2 (units) 

lated with PCc (81-104) (Ag) (100 p h i )  or a 
1:25 dilution of MAb to CD3-r, 2Cl l  (anti- B 
CD3), supematant for 30 min. Cells were then 
washed twice with i-Id phosphate-bu&rcd Cell type: FL GV135 
saline, pH 7.4, in the presence of 0.4 mM sodium Stimulus: U Ag Anti- U Ag Anti- 
orthovanadate plus 0.4 rnM EDTA. % were CD3 CD3 
then s o l u b ~ *  as in Fig. 2A in the prrscn.ce of 1 29.2 - 
mM vanadate and 2 mM EDTA at 1 x 108T cdls 
per milliliter. Samples were then mixed with m 
L a d  sample M a  and the cell lysatc of 

18,2 - 5 x 106dequivalcntspersampkwasr~~0lvcd b 
on 15% SDS-polyaccylamide & traosferrrd to 

- --s- 
nitrocellulose, kd i ~ u n o b l o k d ~ w i t h  an an&- 
nun to phosphotymine (24) and 'UI-labeled protein A Autoradiograms were exposed h r  2 days (FL 
samples) or 3 days (GV135 samples). Phospho 5 (arrowhead) appcars at approximately 21 LD (18) in 
the 2Cll  stimulation of both cell types and in the an@ stimulation of FL only. 

receptor cross-linking, but rather that, in the 
absence of 8, this e i l h  is not d a e n t  fbr 
activation. The apparent qualitative difk- 
ences between antibodies to the T cell recep 
tor and ligand must raise a cautionary note 
in the interpretation of T cdl activation 
studies that use only antibodies to the T cell 
receptor. 
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