
Site-Specific Cleavage of a Yeast Chromosome by 
Oligonucleotide-Directed Triple-Helix Formation 

Oligonucleotides equipped with EDTAOFe can bind specSally to duplex DNA by 
triple-helix fwmation and produce double-strand cleavage at binding sites greater than 
12 base pairs in size. To demonstrate that oligonucleotide-directed triple-helb 
formation is a viable chemical approach for the site-specific cleavage of large genomic 
DNA, an oligonucleotide with EDTA-Fe at the 5' and 3' ends was targeted to a 20- 
base pair sequence in the 340-kilobase pair chromosome III of Saccharomycu 
cerevisiae. Double-strand cleavage products of the correct size and location were 
obserd, indicating that the oligonucleotide bound and cleaved the target site among 
almost 14 megabase pairs of DNA. Because oligonucleoti- triple-helix 
formation has the poanti;ll to be a general solution for DNA recognition, this result 
has implications for physical mapping of chromosomes. 

T ECWNIQUBS FOR THE SITB-SPECIFIC 
cleavage of double-stranded DNA 
are vital to chromosomal mapping, 

gene isolation, and DNA sequencing (1,2). 
Restriction endonucleasa with 4- to 6- 
base pair (bp) binding sites cleave too tie- 
quently for many chromosomal DNA ma- 
nipulations (3). Rare-cutting r d c t i o n  en- 
zymes with 8-bp specificities have found 
widespread use in genetic mapping; howev- 
er, these enzymes are few in number, are 
limited to the recognition of CpG-rich se- 
quences, and cleave at sites that tend to be 
highly clustered (4). Combinations of meth- 
ylases and restriction enzymes that require 
methylated sequences can produce cleavage 
specificities of 8 to 12 bp (5). Transient 
methylase protection can be induced by 
DNA binding proteins that recognize se- 
quences with overlapping dction-meth- 
ylation sites; restriction enzyme digestion 
then produces specific cleavage at the pro- 
tein binding site (6). Recently, endonudo 
ases encoded by group I introns have been 
discovered that might have greater than 12 
bp specificity (7). Unfortunately, none of 
these strategies can be generalized to recog- 
nize and cleave at any of the large number of 
unique sequences contained in human 
DNA. 

Pyrimidine oligonucleotides bind sped-  
caUy to purine sequences in duplex DNA to 
form a local triple-helix structure (8-12). 
The oligonucleotide binds in the major 
groove parallel to the Watson-Crick purine 
strand by Hoogstcen hydrogen bonding (8- 
12). Triple-helix specificity is derived fiom 
thymine (T) binding to adenine-thymine 
base pairs (T-AT base triplet) and protonat- 
ed cytosine (C+) biding to guanine-cyto- 

sine base pairs (C + GC base triplet) (8-15). 
Guanine recognition of thymine-adenine 
base pairs (GTA base triplet) within the 
pyrimidine triple-helix motif (9) and recog- 
nition of (purine),(pyrimidine), t)7~ se- 
quences by alternate strand triple-helm tbr- 
mation (10) have extended recognition of 
duplex DNA to a wide class of mixed pu- 
rine-pyrimidine sequences (1 6). Oligonude- 
otides 15 to 20 bases in length equipped 
with an EDTA-Fe moiety produce se- 
quence-specific double-strand breaks with 
efficiencies ranging fiom 5 t6 25% at their 
target sites within genomes as large as that 
of bacteriophage A (48.5 kbp) (8-10). In 
order to determine if this specificity can be 
achieved in chromosomal DNA, a triple- 
helix target site, 5'-A2G%G&Gli3W-3', 
was inserted proximal to the LEU2 gene on 
the short arm of the 340-kb chromosome III 
of Smharomyces cerevisiae (17-25) by ho- 
mologous recombination (Fig. 1). The ge- 

Fig. 1. !khematic diagram of pUCLEU2B con- 
saucted by insertion of the P a  I-Xma I 4.0-kb 
LEU2 fragment from YEpl3 into pUC19 by 
standard p d u r c s  (19). Compkmentary oligo- 
nucleotides containing a homopurine sequence 
w a r  ligated into the unique Xho I site, upstream 
of the LEU2 gene. 

nctic map location of the LEU2 locus indi- 
cates that double-strand cleavage at the 20- 
bp target site should produce two fiag- 
ments, approximately 110 2 10 and 230 2 
10 kb in size (26) (Fig. 2). We report the 
site-specific cleavage at this genetidy engi- 
ne& sequence on chromosome III by an 
oligonucleotide-(EDTA.Fel2. 

A 20-base pyrimidine oligonucleotide, 5'- 
TYKT4CT2CT3CT4T*-3', with thymidine 
EDTA (P) (27) at the 5' and 3' termini, 
was synthesized by automated methods be- 
ginning with 5'-ODMT-thymidbEDTA- 
aiahylcster 3'-succinyl control pore glass as 
the solid support (DMT, 4,4'-dimethoxyni- 
tyl). Cleavage reactions were performed on 
yeast transformants SEY6210 (- target 
site) and SEY6210B (+ target site) (28). 
Chmmsomal DNA embedded in an agar- 
osc plug was equilibrated with oligonudeo- 
tide-(EDTA.Fe)2 to facilitate diffusion into 
the agarose and triple-helix tbrmation (pH 
7.2, 22°C). The cleavage reaction was initi- 
ated by addition of dithiothreitol (DIT). 
To improve the cleavage yield, a second 
cleavage cyde was performed by disrupting 
the triplex at conditions of high pH (8.5), 
reequilibrating the plug in a triplex-compat- 
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Fig. 2 (Left) Genetic map of S. cerevizinc strain 
SEY6210B (+ target site) chromosome III. The 
locations of HIS4, PGK1, LEU2 loci (boxes), the 
ccntromac (circle), and the aipk-helix target site 
arc indicated. The sizes of the dcaMgc products 
(based upon genetic map disanccs and cxpcri- 
mental d t s )  arc shown. (RlgM) Schematic 
diagram of the mplc-helix unnpkx. The pyrimi- 
dine oligonucleotide with EDTA-Fe at the 5' and 
3' tennini is bound in the major groove parallel to 
the purine strand. 



ible buEkr, and repeating the reaction with 
fresh reagents. The chromosomes were sepa- 
rated by pulsed-field gel electrophoresis and 
detected by ethidium bromide staining (Fig. 
3, A and B). Cleavage products were detect- 
ed by DNA blotting with chromosome III- 
specific probes (Fig. 3, C and D). 

The HIS4 (29) and PCKl (30) genes are 
located on the short and long arms of chro- 
mosome 111, respectively (Fig. 2). DNA 
hybridization of the resolved cleavage prod- 
ucts (Fig. 3A) with a radiolabeled HIS4 
probe revealed a 110 k 10 kb hgment 
present only in the yeast strain containing 
the ~ e e r e d  target site (SEY621OB) (Fig. 
3C, lanes 3 and 4). Hybridization with a 
radiolabclcd PGKl probe revealed a second 
unique fragment 230 10 kb in size (Fig. 
3D, lanes 3 and 4). The extent of double- 
strand cleavage at the target site was tstimat- 
ed at 6% by d e n s i t o q .  The observed 
fkgment sizcs are consistent with thosc 
estimated from the genetic map (26). Thus, 
aftcr searching through almost 14 megabase 
pairs of yeast DNA, the oligonucleotide 

bound and cleaved specifically at the 20-bp (lanes 7 to lo), whereas raising the pH 
above 7.6 eliminated the 240-kb hgment 
(lanes 9 and 10). The 300-kb band and the 
fragment corresponding to the designed tar; 
get site were still observed at pH 7.8 (lanes 9 
and 10) though at lower cleavage &cien- 
cia. This mggests that the order of se- 
quence similarity of the d i E i t  sites with 
the target site are 300 > 240 > 210, 190 
kb. 

A chemical approach for the site-specific 

target site while lea* the &her chro&- 
soma largely intact (Fig. 3B). 

The sequence specificity of pyrimidine 
oligonucleotides for local triple-helix foxma- 
tion on duplex DNA is dependent upon pH, 
temperature, and organic cosolvents (8). 
Under conditions of lower pH, lower tem- 
perature, or added ethanol, oligonucleotides 
have been observed to b i d  to sites that are 
in si@cant but not perfect match with the 
target-site sequence (8). Bccausc the com- 
plete sequence of the yeast genome is not yet 
available, the location and number of sec- 
ondary binding sites on chromosome ITI 
could not be predicted a priori. In- 
@, one major (300 k 10 kb) and three 
minor (190,210, and 240 & 10 kb) second- 

cleavage of in& chromosomes at 12- to 
20-bpUsequencts might assist the large efort 
being dimxed toward mapping genomic 
DNA. For an unambiguous test of site- 
specific cleavage on chromosomal DNA by 
oligonucleotide-directed triple-helix forma- 
tion, a target site of known sequence and 

ary cleavage hgmcnts were d d  on 
homosome III at pH 7.2 (Fig. 3, C and D, 
lanes 3 and 4) (31). The appearance of the 
three minor fkgments (190, 210, and 240 
kb) upon hybridization with the h k h g  
markers HIS4 and PCK1 indicates that the 
minor secondary cleavage sites are h d  on 
the long arm of chromosome III, distal to 
the engineered target site. The major sec- 
ondary cleavage site (300 kb) was not 

approximate physical location was chosen 
for this expaiment. However, the ability of 
oligonucleotide-directed triple-helix fbrma- 
tioi to recognize a wide v-ariety of purine 
and mixed purine-pyrimidine sequences (1 6) 
could allow the orchestrated cleavage of 
large genomic DNA at any genetic marker 
fbr which some sequence information is 
known. 

ire 
CDTAeFe$ flanked by the markers, but must map to 

within 40 kb of a chromosome ITI telomere. 
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