
even be maintained in the face of parasitic 
interactions. For example, the caterpillars of 
at least three species of Maculinea (Table 1) 
live inside Myvmica ant nests to feed on the 
larval brood of their host ant species (22). 
Hence, this study points to the possibility 
that under selection for symbiotic associa- 
tions, the calls of one insect species have 
evolved to attract other, distantly related 
insect species. 
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Allometric Engineering: An Experimental Test of the 
Causes of Interpopulational Differences in Performance 

Hatchling lizards (Sceloporus occidentalis) from a southern population are large and 
have high locomotor performance (speed and stamina) relative to hatchlings from 
northern populations. In order to determine whether differences in performance are an 
allometric consequence of interpopulation differences in size, yolk was removed from 
southern eggs, thereby producing miniaturized hatchlings equivalent in size to 
northern hatchlings. Miniaturized southern hatchlings no longer had higher speed 
than northern hatchlings, but maintained higher stamina. Interpopulation differences 
in speed but not in stamina are thus an allometric consequence of differences in egg 
size. Size manipulation adds an experimental dimension to allometric analyses. 

VER SINCE HUXLEY (1)  FIRST DREW 

attention to the biological signifi- 
cance of relative size and shape, evo- 

lutionary and functional biologists have 
studied the allometric scaling of diverse 
morphological, physiological, and ecologi- 
cal traits (2). Allometric equations not only 
quantify the size dependence of a trait, but 
can also permit comparisons among individ- 
uals, populations, or species (3, 4 )  that differ 

B. Sinervo, Department of Integrative Biology, Universi- 
ty of California, Berkeley, CA 94720. 
R. B. Huey, Department of Zoology, NJ-15, University 
of Washington, Seattle, WA 98915. 

in body size. Consequently, dometric anal- 
yses are often a key step in tests of hypothe- 
ses of trait evolution (2-5). Nevertheless, 
such analyses involve statistical, not experi- 
mental, adjustments of body size (6 ) .  More- 
over, inferences about the proximate or 
mechanistic causes of dramatic differences in 
the intercept and slope of the allometry 
among taxa are risky, because many factors 
influence morphological and physiological 
traits (7). 

Here we apply a novel method for experi- 
mentally manipulating body size, and we use 
this method to explore the mechanistic bases 
for interpopulational differences in the al- 
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lometry of locomotor performance and mor- 
phology of hatchling lizards (Scelopovus occi- 
dentalis). Compared with hatchlings from 
northern populations (Oregon and Wash- 
ington), hatchlings from a southern popula- 
tion (California) are large, have long hind- 
limbs, and have high burst speed and cruis- 
ing stamina (Figs. 1 and 2). The high 
locomotor performances of southern hatch- 
lings might be a mechanistic consequence of 
large body size (Fig. l ) ,  of relatively long 
limbs (8) (Fig. 2A), or of other physiologi- 
cal or morphological differences. The in- 
volvement of these factors can potentially be 
tested at least three ways. First, the small 
northern hatchlings could be raced once 
they had grown to the size of (large) south- 
ern hatchlings, but this comparison would 
confound size and age. Second, analysis of 
covariance can often be used to determine if 
differences in a trait persist when body size is 
adjusted statistically, but such analyses may 
be misleading because causal factors respon- 
sible for trait divergence among populations 
may be different from the factors deterrnin- 
ing allometric scaling among individuals 
within a population. Third, between-popu- 

Washington v 

Oregon V 

i, 
California V 

Hatchling mass (g) 

Fig. 1. Frequency distribution for body mass of 
unmanipulated hatchlings (solid bars, triangle in- 
dicates mean size) from Washington (n  = 87), 
Oregon (n  = 143), and California (n = 61) and 
for size-reduced hatchlings (light shading) from 
Cahfornia (n = 78); dense shading indicates the 
size of unmanipulated sibs. Populations are sig- 
nificantly different with respect to unmanipu- 
lated hatchlings [ANOVA: F(2,288) = 115.6 
P < 0.0011. Whereas the means of unmanipulat- 
ed Washington and California hatchlings lffer by 
more than three standard deviations, unmanipu- 
lated Washington hatchlings and size-reduced 
California hatchlings overlap broadly in size and 
the means are nearly identical. 

lation overlap in hatchling body size can be 
experimentally increased by removing yolk 
from the large southern eggs (9), thereby 
producing southern hatchlings that are simi- 
lar in size to the small northern hatchlings 
(Fig. 1). If performances of size-matched 
hatchlings from the north and south are 
now comparable, then the observed inter- 
populational differences in performance 
would appear to be a simple allometric 
consequence of interpopulational differences 
in egg size. Alternatively, if locomotor per- 
formances of southern hatchlings are still 
high despite size standardization, then the 
observed interpopulational differences 
should be attributable to other evolved dif- 
ferences, not just to size. 

We obtained eggs laid in captivity by 
females (southern California, central Ore- 
gon, and southern Washington) during May 
and June 1988 (10). To produce miniatur- 
ized hatchlings (cover and Fig. 1) from the 
southern population, we partially removed 
yolk from some of the freshly laid eggs of 
California females (11). A few eggs from 

each clutch were unmanipulated (control), 
and a few eggs were poked with the syringe 
but had no yolk removed (sham-manipulat- 
ed) (11). Yolk removal produces miniatur- 
ized hatchlings because egg size and hatch- 
ling size scale with near isometry in both 
unmanipulated and manipulated eggs of S. 
occidentalis (9). The yolk-reduced, sham-ma- 
nipulated and unmanipulated eggs resulted 
in a graded size series of hatchlings (see 
cover for a comparison of the resultant 
range of sizes of hatchlings from a single 
clutch). Additionally, many clutches were 
unmanipulated (12) and thus provide 
among-population comparative data. All 
eggs (hwhlings) were incubated (raised) un- 
der standardized conditions (9). When hatch- 
lings reached 3 weeks of age, we measured 
their size, hindlimb span, and maximum burst 
speed on a laboratory racetrack (13). One to 2 
weeks later, we measured their stamina on a 
slowly moving treadmill (14). 

Some of the interpopulation differences in 
stamina persisted despite experimental re- 
duction in body size (15) (Fig. 2B). Minia- 
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geometric means (squares) are provided for all 

w three populations [Washington (Wa), Oregon 
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P logarithmic). The dometric equations relating 

the scaling between hindlunb span (HLS) and 
body mass (m) are as follows. Washington: 

.- HLS = 42.9m0.'19 (SE for slo 0.024, n = 
h 80); Oregon: HLS = 42. 1m",E2 TSE for slope 
07 1 4 0 -  = 0.019, n = 78); California: HLS = 

47.7m0.15s (SE for slope = 0.038, n = 25); and 
experimentally reduced California hatchlings 

130 I I I (and control sibs): HLS = 46.3m0.271 (SE for 
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Hatchling mass (g) vals also provided). The dometry between 
body mass and (6) stamina (minutes 

4.93m08@ (SE for slope = 0.443, F = 0.06) and (C) burst speed (centimeters per second) = 152moZ4'(& 
for slope = 0.094, P < 0.01); for miniaturized California hatchlings and their M-sized sibs (regression line 
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various size classes of hatchlings resulting from varying degrees of size manipulation [loo% (n = 7, 
unmanipulated; n = 15, sham-manipulated), 70 to 90% (n  = 18), 60 to 70% (n = 12), and 50 to 60% (n  
= 5) of original egg mass remaining after yok removal]. 
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turized hatchlings from California still had 
much higher st&na than did those from 
Washington but not hatchlings from Ore- 
gon (15) (Fig. 2B). Thus, significant inter- 
~ o ~ u l a t i o n  differences in stamina of hatch- 
1 L 

lings, though in part an allometric conse- 
quence of differences in egg and hatchling 
size, are in large part due to other mechanis- 
tic causes, pres&ably those affecting aero- 
bic capacity (4, 16). 

In contrast, interpopulational differences 
in burst speed disappeared when body size 
was standardized and thus were causally 
related to interpopulational differences in 
egg size and thus hatchling size (Fig. 2C). 
Miniaturized southern hatchlings were no 
faster than were similarly sized northern 
hatchlings (17). Moreover, because minia- 
turized southern hatchlings from California 
still had longer legs (18) (Fig. 2A) but not 
faster speeds (Fig. 2C) relative to northern 
hatchlings, interpopulational differences in 
burst speed are unlikely to be purely a 
mechanistic consequence of differences in 
relative hindlimb length, despite presumed 
biomechanical links between these traits (4, 
8). 

Developmental manipulation of body size 
("allometric engineering") adds to compara- 
tive biology a powerhl new experimental 
dimension that can be used with diverse taxa 
(9, 19). Adult size can also be manipulated 
by the use of genetic engineering of the 
hormonal control of growth rate (20). How- 
ever, this technique can currently be applied 
in onljr a few taxa. Size manipulation by 
either technique may allow comparisons be- 
tween populations with limited overlap in 
body size (21), thereby permitting infer- 
ences on the proximate causes of trait evolu- 
tion.  oreo over, both techniques provide a 
direct experimental, not merely statistical, 
evaluation of the proximate influence of 
body size. For example, manipulation of 
hatchling size shows that interpopulational 
differences in sprint speed are probably an 
allometric consequence of interpopulational 
differences in egg size, but that interpopula- 
tional differences in stamina and morpholo- 
gy, though in part due to size, necessarily 
involve additional evolved factors (4, 16, 
22). A comparison of experimental with 
traditional analysis of covariance (AN- 
COVA) analyses (15, 17, 18) demonstrates 
that purely statistical analyses of patterns can 
sometimes present a misleading portrait of 
the role of body size in populational differ- 
entiation in locomotor ~erformance and 
morphology. 

Of course, size manipulation (9, 19, 20) 
provides insights only into proximate-not 
ultimate--causes of interpopulational varia- 
tion in traits. For example, our results do 
not suggest whether contemporary inter- 

populational patterns reflect natural selec- 
tion in southern populations for large size or 
fast speed or both. Nevertheless, size ma- 
nipulation does show that selection on size 
alone is unlikely to account for all the major 
interpopulational differences in locomotor 
performance (or the converse). Moreover, if 
the relative fitness of size-manipulated animals 
is measured in natural populations, some in- 
sights into the ultimate causes of interpopula- 
tional variation can be gained (9, 23). 
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Induction of AIDS in Rhesus Monkeys by 
Molecularly Cloned Simian Immunodeficiency Virus 

Better understanding of the pathogenesis of acquired immunodeficiency syndrome 
(AIDS) would be greatly facilitated by a relevant animal model that uses molecularly 
cloned virus of defined sequence to  induce the disease. Such a system would also be of 
great value for AIDS vaccine research. An infectious molecular clone of simian 
immunodeficiency virus (SW) was identified that induces AIDS in common rhesus 
monkeys in a time frame suitable for laboratory investigation. These results provide 
another strong link in the chain of evidence for the viral etiology of AIDS. More 
importantly, they define a system for molecular dissection of the determinants of AIDS 
pathogenesis. 

I DENTIFICATION OF THE GENETIC DE- 

terminants of oncogenicity and tissue 
specificity of type C retroviruses has 

been achieved largely through the use of 
cloned DNA capable of yielding pathogenic 
virus (1).  Human immunodeficiency virus 
(HIV), the causative agent of AIDS, is a 
member of the lentivirus subfamily of retro- 
viruses. Although much has been learned 
about the molecular biology of HIV, sys- 
tems for study of disease induction by mo- 
lecularly cloned HIV have not been devel- 
oped. In fact, there have been no previous 
reports of disease induction by a molecularly 
cloned lentivirus from any species. 

The simian immunodeficiency viruses 

H. Kestler, T. Kodama, D. Ringler, D. Regier, P. 
Sehgal, M. Daniel, N. King, R. Desrosiers, New En- 
gland Regional Primate Research Center, Harvard Medi- 
cal School, Southborough, MA 01772. 
M. Marthas, N. Pedersen, A. Lackner, California Re- 
gional Primate Research Center and School of Veteri- 
nary Medicine, University of California at Davis, Davis, 

(SIVs) are nonhuman primate lentiviruses 
that are the closest known relatives of HIV- 
1 and HIV-2. They closely parallel their 
human counterparts in genetic organization 
and biological properties (2). Similarities 
between HIV and SIV include lentiviral 
morphology; tropism for CD4 lymphocytes 
and macrophages; extra genes called tat, rev, 
vip, vpv, and nef that other retroviruses do 
not have; use of the CD4 molecule for 
receptor; cytopathicity; and the ability to 
cause chronic disease after long-term persist- 
ent infection. Infection of common rhesus 
monkeys (Macaca mulatta) with some isolates 
of SIV results in AIDS and death in a time 
frame suitable for laboratory investigation 
(3). Features of the AIDS-like disease in- 
duced by SIV include CD4 lymphocyte 
depletion, opportunistic infections, severe 
weight loss, opportunistic neoplasms, and a 
multifocal granulomatous encephalitis. 
These are also features characteristic of 
HIV-induced disease in humans. The simi- 
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Weeks after injection 

Fig. 1. Antibody responses in rhesus monkeys 
inoculated with SIVmac239 cloned virus. Por- 
tions of plasma from blood samples were frozen at 
-70°C on the weeks after inoculation and ana- 
lyzed at a 1:20 dilution for antibodies to SIV by 
enzyme-linked irnmunosorbent assay (ELISA) as 
previously described (6, 9, 19). The five animals 
shown were inoculated with virus produced in 
macaque PBLs (8). The symbols used to identify 
the rhesus monkeys are 0,316-85; @, 452-87; 0, 
54-83; A, 326-87; and A, 124-79. 

oiological properties both in vitro and in 
vivo suggest that SIV systems are highly 
suitable for study of the mechanisms and 
determinants of HIV-induced disease. 

In ~revious studies. three infectious mo- 
lecular clones of SIV from macaque mon- 
keys (SIVmac) were characterized (4-6). Of 
these three clones, SIVmac239 appeared to 
be most natural in that it grew best in - 
primary cultures of macaque peripheral 
blood lymphocytes (PBLs) (6) and it re- 
tained a full-length 41-kD transmembrane 
protein rather than the truncated forms that 
result from growing SIV in human cells (7). 
We thus pursued in greater detail the patho- 
genic of this rriolecular clone. 

SIVmac239-cloned DNA was transfected 
into primary macaque PBLs and into Hut 
78 cells (a human CD4+ T cell line) by a 
DEAE-dextran procedure, and stock virus 
was frozen for subsequent animal inocula- 
tions (8). To be useful for future mutagene- 
sis experiments, it was important that we 
tested not only the original SIVmac239 
lambda DNA clone but also plasmid sub- 
clones. We, and others, have experienced 
considerable difficulty in subcloning the full- 
length proviral DNA into plasmid vectors. 
We thus subcloned two segments of the 
DNA separately and then ligated them at 
their common restriction site before trans- 
fection (8). 

Rhesus monkeys were inoculated with 
this cloned virus both at the New England 
Regional Primate Research Center 
(NERPRC) and at the California Regional 
Primate Research Center (CRPRC). In 
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