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Enhancement of Symbioses Between Butterfly 
Caterpillars and Ants by Vibrational Communication 

Buttedy caterpillars produce calls that appear to play a role in maintaining symbiotic 
associations with ants. A survey of buttedy species from South and Central America, 
North America, Europe, Thailand, and Australia suggests that the ability for caterpil- 
lars to call has evolved independently at least three times, and that calling may be 
ubiquitous among ant-associated species. Because ants use substrate-borne sound in 
their communication systems, this study points to the possibility that the calls of one 
insect species have evolved to attract other, unrelated species. 

A MONG BUlTERFLY CATERPILLARS, 

the ability to form symbioses with 
ants is known only in the families 

Riodinidae and Lycaenidae (1, 2). The na- 
ture of these symbioses is that caterpillars 
provide ants with food secretions in ex- 
change for protection against predators. By 
use of analogous organs, caterpillars from 
these two groups may mediate symbioses 
with ants by producing amino acid and 
sugar secretions or semiochemicals (3, 4). 
Studies indicate that if caterpillars are found 
by insect predators without ants, they have 
no chance of survival (1, 2). Thus, there is a 
premium for any caterpillar species involved 
in symbioses with ants to maintain a con- 
stant cadre of ant guards. In addition to 
secretory organs, riodinid caterpillars that 
form symbioses with ants often have a pair 
of nonsecretory structures termed vibratory 
papillae (5) whose movement has been spec- 
ulated to convey vibrations to ants (4, 6). 
However, the h c t i o n  of vibratory papillae 
has never been demonstrated. I report that 
(i) the vibratory papillae of riodinid caterpil- 

lars function as organs for producing acous- 
tic calls, (ii) caterpillars unable to produce 
calls are experimentally shown to attract 
fewer ants, and (iii) comparative data sug- 
gest that caterpillar calls have evolved at least 
three times, always as part of symbiotic 
associations with ants. 

Caterpillar calls of a typical ant-associated 
riodinid butterfly, Thisbe irenea (7), were 
studied on ~ a r r o .  Colorado Island. Panama, 
and surrounding mainland habitats. Cater- 
pillar calls were detected and recorded by 
using a particle velocity microphone and 
amplifier connected to a tape recorder, and 
the recordings were subsequently analyzed 
for wave form and frequency characteristics 
(8).  

Third through fifth instar caterpillars of 
Thisbe irenea all produced low amplitude 
calls (9). The calls were detectable within a 
5-cm radius of the caterpillar when the 
microphone was in contact with the record- 
ing substrate (8), or if held in direct contact 
with the cater~illar's bodv. When the micro- 
phone was held 1 mm away from caterpillars 
or substrate, no calls were detected, indicat- 
ing that they were entirely substrate-borne. 
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Fig. 1. Waveform of the substrate-borne call 
produced by a fifth instar Thisbe irenea caterpillar. 
(A) An oscillogram trace of two pulses of a typical 
call. A typical call consists of approximately 16 
single pulses per second with an interval between 
each pulse. (B) An amplitude-frequency spectrum 
showing the dominant frequencies of a typical 
call. 

and rarelv when at rest: previous observa- , L 

tions have indicated that the vibratory papil- 
lae are most frequently used at these times 
(4). 

The calls typically consisted of a simple, 
repeated pulse stridulation (Fig. 1). The 
mean pulse rate for the calls of 38 individual 
catersllars (2-s segment per call) was 16.5 
pulses per second (SE, 0.45; maximum, 
21.7; minimum, 11.1). Slight variation in 
number of pulses per second occurred with- 
in and between individual caterpillars; this 
was probably due to the variation in walking 
speed of each caterpillar or the stress level 
while being recorded. Analyses of 76 pulses 
from 20 individual caterpillars showed a 
mean dominant frequency of 896 Hz and 
mean high and low f;equencies of 1480 and 
370 Hz, respectively (1 0). 

The ability to call was eliminated in cater- 
pillars that had their vibratory papillae re- 
moved (11). Except fbr their loss of call, 
these caierpillars fid, oscillated their heads; 
interacted with ants, pupated, and eventual- 
ly produced adult butterflies. Because new 
vibratory papillae are produced at each in- 
star, the ability to call returned to all mute 
caterpillars when they molted to the next 
insta;. Thus. each individual caterpillar be- 
came its own control during the course of 
the study. Those caterpillars with only a 
single vibratory papilla removed all pro- 
duced calls (11). Vibratory papillae do not 
develop until the third instar (4), and corre- 
spondingly, first and second instar. caterpil- 
lars were all found to be mute. The obvious 
head movements associated with sound pro- 
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duction (9) were not noticed in first and 
second instar caterpillars, but the possibility 
that this behavior occurs cannot be elimi- 
nated. 

Caterpillars capable of calling were tended 
by significantly &ore individual ants than 
those caterpillars rendered mute (12). These 
results were found in both the field (median: 
six singing and three mute; T(33) = 109.5, 
Z = 3.055. P < 0.005). and laboratow ex- , , 

perirnents (median: 30 singing and 26 mute; 
T(16) = 10.0, Z = 2.999, P < 0.005). Be- 
cause the secretory organs remained unal- . - 

tered by experimental manipulation (1 I), all 
caterpillars, both calling and mute, were 
tended by ants after placement on the plants. 
Ants si&y tended the caterpillars- when 
they found them. However, given the sur- 
vival benefits caterpillars accrue from the 
constant attention of ants (1, 2), these ex- 
periments suggest that caterpillar calls en- 
hance ant association (13). 

The ability to call was found in 13 other 
species from seven genera of ant-associated 
riodinid caterpillars (Table 1). All of these 
caterpillars possessed vibratory papillae, and 
all 14 species produced substrate-borne calls 
similar to that of T. irenea (14). An addition- 
al four species in the riodinid genus, Euvybia, 
were found to produce substrate-borne calls 
(Table 1) even though they did not possess 
vibratory papillae (5). Thus, mechanisms for 
call production have evolved at least twice 
within riodinid butterflies: once with the 
vibratory papillae, and independently 
through some as yet unknown means. 

In contrast to ant-associated species, a 
survey of 19 species in 16 genera of;leotrop- 
ical riodinid caterpillars that neither form 

symbioses with ants, nor possess secretory 
organs, showed that none produced a de- 
tectable call (Table 1). A fhrther survey 
showed that 25 species of Panamanian cater- 
pillars from the butterfly families Papilioni- 
dae (n = 2), Pieridae (n = 2), and Nympha- 
lidae (n = 21), none of which are known to 
associate with ants, produced no detectable 
calls. 

Butterfly caterpillars in the family Lycaen- 
idae do not have vibratory papillae (5), yet 
19 lycaenid species that typically associate 
with ants were found to produce low ampli- 
tude, substrate-borne calls (Table 1). How 
these lycaenid caterpillars produce calls re- 
mains unknown. In parallel to the riodinids, 
the caterpillars of four neotropical lycaenid 
species that do not associate with ants did 
not call (Table 1). These surveys therefore 
suggest that the mechanism for calling in 
butterfly caterpillars has evolved three times 
in the context of ant association-twice in 
the Riodinidae, and at least once in the 
Lycaenidae. The discovery of calling by ant- 
associated caterpillars from five biogeo- 
graphic regions (Table 1) is consistent with 
the idea that, in addition to secretory organs 
(1-4), caterpillar calls are also likely to be an 
important adaptation to forming symbioses 
with ants, especially since caterpillars of 
closely related species that do not form 
associations with ants did not call. 

In using sound to mediate symbioses with 
ants, caterpillars may be exploiting a com- 
munication system normally used among 
ants. Many ants produce and respond to 
stridulations and substrate-borne vibrations 
as part of colony communication and re- 
cruitment (15), including the ants used in 

the present study. For example, the sub- 
strate-borne stridulations of a buried Atta 
ant attract nestmates who help dig it out, 
and stridulations of the ants Novomessor and 
Messor serve to recruit nestmates to food 
sources (15). Since substrate-borne vibra- 
tions are elements of ant communication 
systems, it is likely that the vibrational calls 
of butterfly caterpillars elicit an investigative 
response in attending ants. Thus in cases 
where attending ants are critical to butterfly 
caterpillars for surviving the attacks of pred- 
ators (1, 2), caterpillars may use calls, in 
concert with their secretory organs, to re- 
cruit and maintain the presence of protective 
ants; calling caterpillars may accrue better 
protection from enemies than mute ones. 

Although sound production that func- 
tions during courtship or as a defense has 
been reported from a variety of moth fam- 
ilies ( I @ ,  sound production is rarely report- 
ed from butterflies (17). Adult butterfly 
sounds are thought to function in courtship 
or as defenses in members of the family 
Nymphalidae (18), whereas sounds of pupae 
in the Lycaenidae are considered predator 
deterrents (19). However, prior to this re- 
port, sound production was unknown from 
butterfly caterpillars, nor was it known from 
any symbiotic association with ants. 

Our current understanding of insect com- 
munication suggests that acoustical signals 
evolved in response to courtship and rivalry, 
mate recognition (16, 20), short distance 
communication between colony members of 
social insects (15), or as defenses (19, 21). In 
most of the cases presented here (Table l ) ,  
caterpillar calls occur in the context of mutu- 
alistic interactions with ants, yet calls may 

Table 1. Call production by riodinid and lycaenid butterfly caterpillars. Abbreviations for countries: Pan for Panama and CR for Costa Rica. The 
Myrmecophilous refers to species that typically form symbioses with ants, ability of the caterpillar to produce calls is shown by Y for calls produced and 
and nonmyrmecophilous are species that do not associate with ants. The N for no calls produced. Depending on the species, from 1 to more than 50 
country of origin for each species tested is in parentheses following its name. individual caterpillars were surveyed for ability to call. 

Riodinidae Lycaenidae 

Myrmecophilous Nonmyrmecophilous Myrmecophilous Nonmyrmecophilous 

Eurybia lycisca (Pan) Y 
Eurybia patrona (Pan) Y 
Eurybia elvina (Pan) Y 
Eurybia sp. (Ecuador) Y 
Thisbe irenea (Pan) Y 
Synargis mycone (Pan) Y 
Synargis gela (Ecuador) Y 
Juditha molpe (Pan) Y 
Menander menander (Pan) Y 
Calospila cilissa (CR) Y 
Calospila emylius (Ecuador) Y 
Unknown genus (Pan) Y 
Theope thestias (Pan) Y 
Theope matuta (Pan) Y 
Theope virgiha (Pan) Y 
Theope sp. (Pan) Y 
Theope nr, decorata (CR) Y 
Nymphidium mantus (Pan) Y 

Leucochimona lagora (CR) N 
Leucochmona sp. (Pan) N 
Leucochimona iphias (Pan) N 
Mesosemia telegone (Pan) N 
Mesosemia sp. (Ecuador) N 
Euselasia sp. (Pan) N 
Cremna thasus (Pan) N 
Napaea eucharilla (Pan) N 
Ancyluris inca (Pan) N 
Rhetus arcius (Pan) N 
Charis sp. (Pan) N 
Mesene sp. (Pan) N 
Melanis pixie (CR) N 
Mesenopsis bryaxis (Pan) N 
Esthemopsis sericina (Pan) N 
Symachia tricolor (Pan) N 
Sarota gyas (Pan) N 
Anteros formosus (Pan) N 
Emesis lucinda (CR) N 

Chlorostrymon simaethis (Pan) Y Eumaeus godarti (Pan, CR) N 
Strymon yojoa (Pan) Y Symbiopsis tanais (Pan) N 
Arawacus lincoides (Pan) Y Thecla hisbon (Pan) N 
Olynthus narbal (Pan) Y Pseudolycaena damo (Pan) N 
Therias pedusa (Pan) Y 
Therias nr enenia (Pan) Y 
Panthiades bitias (Pan) Y 
Rekoa palegon (Pan) Y 
Tmolus legytha (Pan) Y 
Thecla sp. (CR) Y 
Lycaeides melissa samuelis (U.S.) Y 
Hypolycaena erylius (Thailand) Y 
Jalmenus evagoras (Australia) Y 
Maculinea arion (Poland) Y 
Maculinea rebeli i~rancej  Y 
Maculinea alcon (France) Y 
Cupido minimus ' ( ~ n ~ l k d )  Y 
Lysandra bellargus (England) Y 
Polyornmatus icarus (England) Y 
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even be maintained in the face of parasitic 
interactions. For example, the caterpillars of 
at least three species of Maculinea (Table 1) 
live inside Myvmica ant nests to feed on the 
larval brood of their host ant species (22). 
Hence, this study points to the possibility 
that under selection for symbiotic associa- 
tions, the calls of one insect species have 
evolved to attract other, distantly related 
insect species. 
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Allometric Engineering: An Experimental Test of the 
Causes of Interpopulational Differences in Performance 

Hatchling lizards (Sceloporus occidentalis) from a southern population are large and 
have high locomotor performance (speed and stamina) relative to hatchlings from 
northern populations. In order to determine whether differences in performance are an 
allometric consequence of interpopulation differences in size, yolk was removed from 
southern eggs, thereby producing miniaturized hatchlings equivalent in size to 
northern hatchlings. Miniaturized southern hatchlings no longer had higher speed 
than northern hatchlings, but maintained higher stamina. Interpopulation differences 
in speed but not in stamina are thus an allometric consequence of differences in egg 
size. Size manipulation adds an experimental dimension to allometric analyses. 

VER SINCE HUXLEY (1)  FIRST DREW 

attention to the biological signifi- 
cance of relative size and shape, evo- 

lutionary and functional biologists have 
studied the allometric scaling of diverse 
morphological, physiological, and ecologi- 
cal traits (2). Allometric equations not only 
quantify the size dependence of a trait, but 
can also permit comparisons among individ- 
uals, populations, or species (3, 4 )  that differ 

B. Sinervo, Department of Integrative Biology, Universi- 
ty of California, Berkeley, CA 94720. 
R. B. Huey, Department of Zoology, NJ-15, University 
of Washington, Seattle, WA 98915. 

in body size. Consequently, dometric anal- 
yses are often a key step in tests of hypothe- 
ses of trait evolution (2-5). Nevertheless, 
such analyses involve statistical, not experi- 
mental, adjustments of body size (6) .  More- 
over, inferences about the proximate or 
mechanistic causes of dramatic differences in 
the intercept and slope of the allometry 
among taxa are risky, because many factors 
influence morphological and physiological 
traits (7). 

Here we apply a novel method for experi- 
mentally manipulating body size, and we use 
this method to explore the mechanistic bases 
for interpopulational differences in the al- 
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