
we conclude that the sample is chemically 
inhomogeneous, that the Li+ comes from 
the same source as Na+, and that the mass- 
91 ions come from a different source than 
either Na' or Li+. This same argument 
holds for several other species as well. The 
peaks associated with PS generally have 
<1% coincidence with Na' whereas those 
associated with NaF have >5% coincidence 
with Na' (Fig. 4). 

For a more precise comparison between 
the two groups, one can also attempt to fit 
the experimental data to the model. Given 
that the sample is composed of -0.5-pm 
NaF crystals on PS and that the coverage of 
these crystals on the PS surface is -3%, one 
finds that Phomo(M+,Na+), where M+ is an 
arbitrary mass ion, is a factor of -70 greater 
than Pin(M+,Na+). In Fig. 4, Pin(M+,Na+) 
is represented by the group of points associ- 
ated with PS, whereas Phomo(M+,Na+) is 
represented by the group of points associat- 
ed with NaF. From the plot, one observes 
that %ho,o(M+,Na+) is only a factor of 15 
greater than %in(M+,Na+). This factor is 
lower than that predicted by the model 
because the NaF crystals are not squares as 
the model assumes. As noted earlier, irregu- 
larly shaped NaF crystals lead to a longer 
interface between the NaF and the PS and 
larger values for %i,(M+,Na+) than are 
expected by the model. Nevertheless, the 
difference in the percent coincidences of 
more than an order of magnitude between 
the two groups supports the conclusion that 
the polystyrene is indeed spatially well sepa- 
rated from the NaF. 

This example demonstrates the use of 
coincidence counting with TOF mass spec- 
troscopy in the analysis of surfaces for chem- 
ical homogeneity at the 100-nm level. In 
principle, the technique should have an ulti- 
mate resolution of about 10 nm, that is, the 
diameter of the sample spot addressed by an 
individual primary ion (9). In practice, the 
resolution limit is set by the length of the 
interface of highly irregularly shaped inho- 
mogeneities in the sample. The coincidence 
spectra may also be useful in revealing chem- 
ical relations between secondary ions and in 
the separation of mass spectrometric signal 
from background. Further, coincidence 
counting may be useful in examining the 
kinetic energy relations of secondary ions 
and the relation of secondary ions to second- 
ary electrons. 
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Image Reconstruction of the Interior of Bodies That 
Diffuse Radiation 

A method for reconstructing images from projections is described. The unique aspect 
of the procedure is that the reconstruction of the internal structure can be carried out 
for objects that diffuse the incident radiation. The method may be used with photons, 
phonons, neutrons, and many other kinds of radiation. The procedure has applications 
to medical imaging, industrial imaging, and geophysical imaging. 

I N THIS REPORT WE DESCRIBE A PRO- 

cedure to determine and display images 
of the internal structure of objects that 

&@use radiation. Such objects are members 
of a large class. For example, the human 
body diffuses infrared radiation, ultrasonic 
radiation, and neutrons. Almost all solids 
are also in this class. It is difficult to specify a 
substance in which diffusion along with 
absorption does not occur for some form of 
radiation. 

We began studying the transmission of 
infrared laser beams through animal tissues. 
The projections of diffusely transmitted ra- 
diation could be observed by silicon detec- 
tor arrays and displayed on a video screen. 
For tissues up to about 2 cm thick, we could 
observe shadowgraphs of internal struc- 
tures. Thicker tissues produced fuzzier shad- 
owgraphs until the internal structures be- 
came difficult to delineate. Conventional 
techniques for reconstructing multiple pro- 
jections by Cormack ( I ) ,  Hounsfield (2), 
Boyd (3) ,  and others for application to 
computer tomography were not helpful in 
reconstructing our diffused projections. We 
did observe that considerable information 
about internal structures existed within 
these projections. This observation prompt- 
ed our research into methods of reconstruct- 
ing internal images of objects utilizing a 
large collection of shadowgraphs. 

The problem was to develop a method of 
image reconstruction that could utilize the 
diffu-sed image projections and reconstruct 
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internal features of the diffusing object. The 
simplest case is a homogeneous slab with no 
internal structure with a panicle beam di- 
rected at the face of the slab. This ideal 
example has been completely solved by 
Feynman and Hibbs (4). However, imaging 
the interior of a homogeneous body pro- 
vides minimal information because there is 
no interior structure. In imaging more com- 
plex objects, we use the Feynman concept of 
summing the emergent panicles over all 
possible paths ( 5 ) .  The resultant pattern of 
emergent particles will therefore contain the 
"history" of these paths. 

To reconstruct the interior structure of an 
object containing inhomogeneities, we 
make the following assumptions: 

1) Divide the object into volume ele- 
ments (voxels); set the size of the voxels to 
be the desired resolution. (When dealing 
with the two-dimensional case, each element 
is termed a pixel.) 

2) The beam enters the object at 
a series of points sequentially in time. 

3) The particles of the beam may enter 
and leave each voxel, if not annihilated by 
absorption within the voxel. The absorption 
probability is vijk per voxel, and the survival 
probability is wck per voxel, where wijk = 1 
- vw The scattered probabilities for each 
voxel are hk = forward scatter probability, 
bijk = backward scatter probability, sijk 

= sideways scatter probability, and we as- 
sume that bijk = 1 - 43ijk - f;jk The proba- 
bility of a forward scatter is given by wijk 
.jjk; the probability of a backward scatter is 
wijk bijk; the probability of a sideways scat- 
ter is wijk . siik 

4) For each voxel we provide the varia- 
bles w, f; b, and s. As pointed out above, 
these reduce to three variables. 
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m+ 
L Detectors .+ 
Fig. 1. Pictorial description of a source and a 
detector array in an arbitrary position. 

5) We provide a detector array to detect 
the particles emergent from the object. The 
relative quantities of the emergent particles 
(the intensities) are inputs to a computer 
system. 

6 )  Within a voxel, particles are either 
absorbed or are scattered to their nearest 
neighbors. 

The imaging procedure uses a beam of 
particles directed at the surface of the object; 
the beam is sequentially directed at all avail- 
able peripheral surfaces. The diffuse radia- 
tion emerging from the object is collected by 
an array of particle detectors that detect 
relative intensities, as schematically shown 
in Fig. 1. The intensity values are converted 
to digital form by an analog-to-digital con- 
verter and then stored in a computer memo- 
ry system. A set of output values are ob- 
tained for each beam position. If the entire 
object is scanned by the input beam and the 
diffise radiation is collected for .all of the 
available positions, then a complete set of 
data is obtained. 

A complete set provides much more data 
than is needed for the reconstruction; gener- 
ally a partial set is utilized. A partial set is 
more practicable in imaging because some 
of the surfaces of the object may not be 
accessible, or because some of the surfaces 
may not be accessible to both the beam 
source and the detector array. 

Each particle path is convoluted because 
of multiple scattering. In general, the prob- 
lem of reconstruction is three dimensional. 
For ease of explanation, however, we will 
discuss a two-dimensional system. General- 
ization to the three-dimensional case is 
straightforward, and is described within the 
discussion. 

The term "forward solution" refers to the 
following scenario: if we know the values of 
w", h, bU, and s" for all the voxels in the 
object, and we beam a known amount of 
radiation at a specified voxel on the periph- 
ery of the object, we can compute the 
amount of radiation that will be detected by 
each of the detectors around the object. In 
other words, the forward solution is the 
process of computing the values of the 

external variables, that is, the detected radia- 
tion values. This is accomplished by setting 
up a system of linear equations for the 
probabilities Plk that a particle inserted at 
beam position k will emerge at detector 
position 1. 

The "inverse solution" is a method of 
solving the following problem: given a set of 
intensity measurements obtained by using 
an array of detectors, compute the w", h, b", 
and s" coefficients for all the pixels in the 
object being imaged. In other words, the 
inverse solution is the solution to the ori- 
mar- problem of reconstruction of the inte- 
rior of the object, with the relative detected 
radiation intensities, Plk, as the only known 
Darameters. 

Generally speaking, the inverse solution is 
an iterative process that works as follows. 
One first takes the required measurements 
and then makes an in%.ial guess as to the 
values of the wit, h, bii, and sit coefficients for 
all the voxels in the object. If the initial guess 
is based on the expected structure inside the 
object, that may substantially improve the 
speed with which the inverse solution is 
computed. However, for the purposes of 
testing the first prototypes, we have used an 
initial set of values corresponding to an 
object of uniform qualities, such as 
wij=0.5,fj=0.7, b i i = O . l ,  andsij=0.1 
for all voxels inside the object. 

Next, given the current values of the 
attenuation and scattering coefficients, the 
imaging system computes the expected in- 
tensities at each of the detectors' positions. 
In other words, one uses the above-de- 
scribed "forward solution'' to compute how 
much radiation would emerge from the 
object at each detector position if the ob- 
ject's interior were accurately modeled by 
the currently assumed values of the attenua- 
tion and scattering coefficients. 

Then, one determines the differences be- 
tween the computed detector intensity val- 
ues and those measured. More specifically, if 
we let Plk be the measured intensity at sensor 
1 with the source at position k, and CN, the 
corresponding computed intensity, then our 
problem consists in minimizing: 

where Nd and N, are the total number of 
detectors and sources, respectively (Fig. 1). 

Using special minimization techniques we 
adjust the values of the coefficients wtk, hk, 
and siik (or w h  h, and s" in the two- 
dimensional case) until the error E is below 
a chosen threshold. This brings in some of 
the mathematical difficulties of this prob- 
lem, namely, how ,to avoid local minima, as 
discussed in the next section. The general 
class of minimization methods used here are 

called "gradient descent methods." See, for 
example, Press et al. (6). In summary, the 
gradient descent method produces an updat- 
ed set of coefficients that will better match 
the actual radiation propagation characteris- 
tics of the object being imaged. 

Once the iterative computation process is 
completed, a series of images is generated 
from the computed coefficient values. For 
instance, the system will typically draw an 
image in which the darkness or color of each 
point corresponds to the attenuation coeffi- 
cient w" of the corresponding pixel; and 
another image in which the darkness or 
color of each point corresponds to the side- 
ways scattering coefficient s~ Images based 
on the backwards and forward scattering 
coefficients b" and h are also generated to 
depict different characteristics of the object. 

Referring to Fig. 2, A and B, there is 
shown in Fig. 2A a map of the attenuation 
characteristics of a two-dimensional simulat- 
ed object. Using the procedures described 
here, we reconstructed the attenuation char- 
acteristics of this object, resulting in the map 
shown in Fig. 2B. More specifically, Fig. 2B 
is a map of the computed v" coefficients 
(equal to 1 - wti) for the object. 

It is interesting to note that while the 
reconstructed image in Fig. 2B is generally 
quite accurate, the one portion of the object 

Fig. 2. (A) A simulated two-dimensional d f i s -  
ing object (a phantom) which has attenuation 
values plotted as the hills (heights). The x and y 
coordinates are those of the object. (B) The 
reconstruction of the phantom object using the 
diffused radiation emergent from the phantom in 
(A). The attenuation values are plotted as the 
hills. In this plot the correspondence can be 
compared with the phantom object of (A). 
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that is not as accurately reconstructed is a 
"dark region" located between two sections 
of high-attenuation materials and towards 
the center of the object. This is to be 
expected for the two-dimensional object re- 
construction because of radiation "block- 
ing" in two dimensions. A more accurate 
reconstruction is obtained when using a 
three-dimensional reconstruction. 

The image procedure generates additional 
images by mapping the computed Jj, bij, and 
sii coefficients. It is expected that the images 

Fig. 3. (A) Characteristics of the attenuation of a 
cross section of a three-dimensional object (a 
phantom object). (0 )  Reconstructed attenuation 
in the presence of 5% multiplicative noise. 

Fig. 4. (A) Characteristics of the fonvard-scatter- 
ing coefficient of a cross section of a three- 
dimensional object (vertical axis pointlng down). 
(0)  Reconstructed forward-scattering coefficient 
of a section of a three-dimensional object in the 
presence of 5% noise. 

based on the computed h, bba and sv coeffi- related to this problem. The method de- 
cients provides information not available scribed in this article would not have been 
from systems which measure only the atten- 
uation of an object (corresponding to the w y  

coefficients), which is also computed by the 
present system. 

Next we show a set of images generated 
with a simulation of a three-dimensional 
object modeled as a three-dimensional array 
of voxels. Figure 3A shows the attenuation 
characteristics of one slice (a two-dimen- 
sional section) of this object, and Figs. 4A 
and 5A show the forward and side-scatter- 
ing characteristics of the object. 

Using a set of modified measurement 
values, representing a 5% noise factor, we 
generated the attenuation and scattering co- 
efficients for a phantom object 3A by means 
of the above-described inverse solution tech- 
nique. Figures 3B, 4B, and 5B represent the 
attenuation, forward-scattering, and side- 
scattering characteristics of the reconstruct- 
ed image of phantoms 3A, 4A, and 5A when 
the measurement values include a 5% noise 
factor. As can be seen, while the reconstruct- 
ed images generated are affected by noise, 
the general characteristics of the object are 
still reconstructed quite well with a 5% 
noise factor. We have also done these recon- 
structions with no noise, 0.1% noise, and 
1% noise. In these cases the reconstructions 
were much better, as one would expect. The 
no-noise case matched almost perfectly Figs. 
3A, 4A, and 5A. We.omit these pictures for 
lack of space. 

We discuss now some mathematical issues 

feasible without the computing power avail- 
able in recent years. But even with powerful 
computers the large amount of computation 
requires effective algorithms. In the forward 
problem, the number of equations grows 
very quickly as the voxel size decreases. In 
fact, the number of equations is proportion- 
al to ( ~ 1 ~ ) ~  where L is the length of the 
object and p is the voxel side. A few sugges- 
tions have been put forward in the direction 
of using iterative methods. The examples 
shown here made use of standard LU de- 
composition numerical routines in the solu- 
tion of the forward problem. The forward 
problem is very well suited for parallel com- 
putations, since to do this one has to solve 
systems of the form Ax = y for as many 
right-hand sides y as detectors. 

In the inverse problem, the method that 
we use is essentially a gradient descent tech- 
nique. The classical problem here is to avoid 
being trapped in a local minima. One strong 
candidate is "simulated annealing." Simulat- 
ed annealing has recently attracted the atten- 
tion of the mathematical community due to 
its reported power to deal with a number of 
problems such as the traveling salesman 
problem and the optimal design of integrat- 
ed circuits [see, for example, ( 7 ) ] .  

The general methodology of our ap- 
proach can be divided into three steps. First, 
we consider a discrete model describing the 
movement of particles in a fairly general 
medium. This model could be technically 
described as a two-step Markov process. It is 
not hard to see that it can also be looked 
upon as a discretization of an equation 
similar to the Boltzmann transport equation 
in the spatial and angular variables. Other 
models or partial differential equations de- 
scribing propagation of radiation (such as 
the wave equation), could also be suitable 
for such an approach. Second, we develop 
algorithms for the solution of the forward 
problem. Third, we attack the reconstruc- 
tion problem by minimizing the distance 
between the actual measurements and the 
computed solutions by varying the values of 
the coefficients of the linear system until an 
acceptable fit occurs. This methodology 
could certainly be applied to a number of 
models besides the one presented here. 

This problem can also be easily cast as a 
neural network in which each voxel is repre- 
sented by six neurons, one neuron for each 
direction of exit from the voxel. The activity 
of these cells corresponds to the radiation 

Fig. 5. (A) Characteristics of the side-scattering flux in a given direction and is equal to a 
u 

coefficient of a section of a three-dimensiond weighted activity coming in from 
object (a phantom object). (0)  Reconstructed 
side-scattering coefficient of a section of a three- all six neighbors. Learning techniques such 

dimensional obiect in the Dresence of 5% multi- as back propagation (8) have a ~ ~ l i c a -  
plicative noise. tions to these problems. 
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Ultradeep (Greater Than 3 00 Kilometers), Ultramafic 
Upper Mantle Xenoliths 

Geophysical discontinuities in Earth's upper mantle and experimental data predict the 
structural transformation of pyroxene to garnet and the solid-state dissolution of 
pyroxene into garnet with increasing depth. These predictions are indirectly vefied by 
omphacitic pyroxene exsolution in pyropic garnet-bearing xenoliths from a diamondif- 
emus kimberlite. Conditions for silicon in octahedral sites in the original garnets are 
met at pressures greater than 130 kilobars, placing the origin of these xenoliths at 
depths of 300 to 400 kilometers. These ultradeep xenoliths support the theory that the 
400-km seismic discontinuity is marked by a transition from peridotite to eclogite. 

IAMONDIFEROUS KIMBERLITBS which is largely basaltic in composition, is 
are widely recognized as hosts for a predicted to transform to eclogite (Na-rich 
rich source of xenoliths from dinopyroxene and Fe-Ca-Mg-rich garnet) 

Earth's upper mantle (I). Study of these with increasing depth, but eclogites in kim- 
accidental inclusions have provided critical berlites may also form by low-pressure par- 
data on the composition, age, and evolution tial melting of garnet lhenolite (9). The 
of  arts of the uDver mantle as well as on the 

origin of eclogites is by no means settled 
(lo), nor are the propositions that the deep- 
er asthenosphere is composed of piclogite 
[olivine-bearing eclogite (II)] or alterna- 
tively of garnetite [garnet and the solid-state 
transformation of pyroxene to the garnet 
structure, (IZ)], both of which require high 
temperatures and depths exceeding 300 km. 

Conversion of low-pressure pyroxene to 
the garnet structure, or the solid-state disso- 
lution of pyroxene in garnet, requires that 
some of the Si in fourfold tetrahedral (siIV) 
coordination at low pressure be converted 
to sixfold octahedral (siV1) coordination, 
which is indicative of high pressure (13). 
Because the ratio of Si to 0 in pyroxene is 
4: 12 rather than the garnet value of 3 : 12, 
the chemical signature of this high pressure 
substitution is more than 3 Si atoms per 12 
0 atoms (14,15). Although solid solution of 
pyroxene in garnet was demonstrated ex- 
perimentally more than 20 years ago (16), 
naturally occurring analogs have only re- 
cently been recognized in diamond inclu- 
sions from South Africa (I 7) and Brazil (1 8). 

We have now identified xenoliths similar 
to the mineral inclusions from diamond that 
have eclogitic a5nities and large concentra- 
tions of omphacite (diopside-jadeite solid 
solution) exsolved in pyropic garnet. The 
xenoliths were collected from coarse (1 to 5 
cm) heavy media concentrates resulting 
from commercial diamond recovery at the 
Jagersfontein kirnberlite, 230 km southeast 
of Kimberley, South Africa (19). Two xeno- 

boundary (8). Subducted oceanic crust, Flg. 1.  Photomicrographs of garnet (gt) with exsolved dinoroxene (cpx) along crystallographically 
controlled planes. (A), (C), and (D) are from sample JX-25 and (0)  is from JX-50. The sketch in (C) 
schematically illustrates the ordered distribution of dinopyroxene lamellae in the garnet and the increase 

S. E. Haggcq, Depvnnent of Gco'ogy, of in the number of lamellae with distance from the larger clinopyroxene grain; note the irregular Massachusetts, Amherst, MA 01003. 
V, Sauncr, Labomtoin de Gco hysi ue de Geodyna- geometry of the grain boundary contact between garnet and dinopyroxene and the lamellae-free 

h t m e ,  Unixsite de $ u v h  91405 k a y  h i o n  zone. Bright veinlets are cracks 6Ycd by secondary calcite, mica, and amphibole. m e  
a, France. millimeter scale applies to (A), (B), and (C), and the micrometer scale to (D). 
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