
Numerical Transforms 

Numerical computation of transforms is now widely 
practiced in science and industry and has been revolution- 
ized by the development of fast transforms that make 
feasible computing projects that once could not be con- 
templated. The article discusses the significance of trans- 
forms in numerical work, defines the modem forms of 
several common transforms and their inverses, gives ex- 
amples, and describes and gives references to methods of 
numerical evaluation. 

T HE BEST KNOWN TRANSFORMS ARE THOSE NAMED FOR 

Laplace, Fourier, Hilbert, Hankel, Mellin, and Abel, all of 
which continue to attract contributions to the mathematical 

literature. Years ago their use was mainly analytic. Indeed, the 
theory of Fourier series developed hand in hand with modern 
analysis, but with the growth of automatic computing new applica- 
tions have developed. Although the Fourier transform was always 
used for computing, at least by a few practitioners, today computing 
by means of the fast Fourier transform (FFT) is a widespread 
activity in all technical fields by very large numbers of technicians, 
engineers, and scientists, including many in biology and medicine. 

Speed is of the essence in certain applications of computers. An 
image that takes several minutes to compute becomes more interest- 
ing when it can be completed and displayed in a time as short as a 
heartbeat, a chemical reaction, or an industrial process. Besides 
discussing the state of numerical evaluation of the well-known 
transforms, I will treat the Radon transform, because of its relation 
to the exploding field of tomography, and the Hartley transform, 
because it is a new development in spectral analysis related to the 
FFT. Several other important transforms are mentioned briefly in 
the available space. 

The Transform Concept 
What is a transform? Think of a function Ax), for example, 

exp(-lxl), on which some explicit operation T is carried out, 
leading to another function T{f(x)). Call this other function F(). We 
say that F() is the such-and-such transform of the function fo that 
we first thought of. The symbols for the independent variables are 
deliberately omitted in order to focus attention on the idea that the 
functional shape F() derives from the original shapefo, not from 
either the value of the independent variable or its identity. With the 
Fourier transform, the operation T is as follows. "Multiply the 
function Ax) by exp(- i2asx), where s is the transform variable, and 
integrate with respect to x from -m to m." Applying this operation 
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toAx) = exp(-lxl), we find that TCf(x)) = F(r) = 241 + ( 2 ~ s ) ~ ] ,  
which is the Fourier transform of exp(- 1x1). 

It is apparent that any particular value of F(s), for example, F(2) 
which equals 0.0126, takes into account the whole range of x; that 
is, the value depends on the shape of fo as a whole, not on any 
single point. Thus the Fourier operation is quite unlike the opera- 
tion that convertsf(x) = exp(- 1x1) to sin[exp(- Ixl)]. The outcome 
of this latter o~eration is referred to as a "function of a function." 
and each of the resulting values depends on only a single value of x, 
not on the whole shape of A). 

With some transforms-the Abel transform is an example-ach 
transform value depends on only a part of, not all of, A); with other 
transforms the transform variable does not necessarily have a 
different identity (as s is different from x) but may have the same 
identity (~ i lbe ;  transform) 

All the transforms dealt with here are linear transforms, which are 
the commonest type; they all obey the superposition rule that 
T{fi (x) + fi(x)} = T{fi (x)} + T{fi(x)}, for any choice of the given 
functionsfi(x) andfi(x). An example of a nonlinear transformation 
is provided by T{Ax)) = a + bf(x), as may be tested by reference to 
the superposition definition; clearly the term "linear" in linear 
transfo;mdoes not have the same meking as in Cartesian geometry. 

Discrete Transforms 
Before defining the main transforms succinctly by their operations 

T, all of which involve integration over some range, it is worth 
commenting on a numerical aspect. One could take the point of 
view, as is customary with numerical integration, that the desired 
integral is an entity in its own right; that the integral may on 
occasion be subject to precise evaluation in analytic terms, as with 
F(s) = 241 + ( 2 ~ r r ) ~ l ;  and that, if numerical methods are required, 
a sum will be evaluated that is an approximation to the desired 
integral. One would then discuss the desired degree of approxima- 
tion and how to reach it. This is quite unlike the customary way of 
thinking about the discrete Fourier transform. What we evaluate is 
indeed a sum, but we regard the sum as precise and not as an 
approximation to an integral. There are excellent reasons for this. 
Meanwhile, the important thing to realize is that there are both a 
Fourier transform and a discrete Fourier transform, each with its 
own definition: 

Fourier transform: F(s) = (1) 

1 N-l 
Discrete Fourier transform: F(v) = - 1 f ( ~ ) e - ' ~ " " ' ~  

N ,=o 
(2) 

The word "discrete" is used in antithesis to "continuous" and in 
the cases discussed here means that an independent variable assumes 
integer values. In order to understand the discrete Fourier trans- 
form, which is exclusively what we compute when in numerical 
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mode, it is best to forget the Fourier integral and start afresh. 
Instead of starting with a complex function Ax) that depends on the 
continuous real variable x, we start with N data (complex in general, 
but often real) indexed by an integer serial number T (like time) that 
runs from 0 to N - 1. In the days when FORTRAN did not accept 
zero as a subscript, summation from T = 0 caused much schizophre- 
nia, but the mathematical tradition of counting from zero prevailed 
and is now unanimous. The quantity T can be thought of as time 
that is counted in units starting from time zero, in cases where f () is 
a wave form, as it often is. Clearly, N samples can never fully 
represent exp(-lxl), for two reasons: (i) the samples take no 
account of the function where x exceeds some finite value, and (ii) 
no account is taken of fine detail between the samples. Nevertheless, 
one may judge that, for a given particular purpose, 100 samples will 
suffice and the confidence to judge may be bolstered by trying 
whether 200 samples significantly affects the purpose in hand. 
Numerical intuition as developed by hand calculation has always 
been a feature of mathematical work but was regarded as weak 
compared with physical intuition. Nowadays, however, numerical 
intuition is so readily acquired that it has become a matter of choice 
whether to attack questions about the size of N by traditional 
analytic approaches. A new mix of tools from analysis, finite 
mathematics, and numerical analysis is evolving. 

The discrete transform variable v reminds us of frequency. If T is 
thought of as time measured in integral numbers of seconds, then v 
is measured in cycles per second and is indeed like frequency (cycles 
per second or hertz), but not exactly. It is vlN that gives correct 
frequencies in hertz, and then only for v 5 Nl2. Where v exceeds 
Nl2, we encounter a domain where the discrete approach conflicts 

with the continuous. When the Fourier transform is evaluated as an 
integral, it is quite ordinary to contemplate negative values of s, and 
a graph of F(r) will ordinarily have the vertical s = 0 axis in the 
middle, giving equal weight to positive and negative "frequencies." 
(The unit of s is always cycles per unit-of-x; if x is in meters, r will be 
a spatial frequency in cycles per meter; if x is in seconds, r will be a 
temporal frequency in cycles per second, or hertz). However, the 
discrete Fourier transform, as conventionally defined, explicitly 
requires the transform variable v to range from 0 to N - 1, not 
exhibiting negative values at all. There is nothing wrong with that, 
but persons coming from continuous mathematics or from physics 
may like to know that, when v is in the range from N12 to N - 1, 
the quantities N - v correspond to the negative frequencies familiar 
to them as residing to the left of the origin on the frequency axis. 
This is because the discrete transform is periodic in v, with period N. 
If one wishes to adopt a private definition with v ranging from 
-Nl2 + 1 to Nl2, the formulas still work. 

Just as in the familiar Fourier series the first term a0 represents the 
dc or zero frequency value, so the first term F(0) of the discrete 
Fourier transform is the average of the N data values. This is the 
reason for the factor 11N in front of the summation sign in Eq. 2, 
and the factor must be remembered when checking. In practical 
computing it is efficient to combine the factor l / N  with other factors 
such as calibration factors and graphical scale factors, which are 
applied later at the display stage. 

How to decide whether the discrete Fourier transform is an 
adequate approximation to the Fourier transform is a very interest- 
ing question. In the first place, who says it is an approximation? If I 
am studying cyclicity in animal populations, perhaps seasonal 

Name Nature of Example of Nature of Nature of Example of Defining formula 
of function function transform transform transform and the inverse 
transform domain variable 

variable 
e l . 5 S  

Laplace Continuous, f  ( x )  = e-"-',5H ( x  f 1.5) Continuous, Complex 1+,, -1 < Re s 
real complex 

Fourier Continuous, f ( x )  = e -x - l . sH(x  + 1.5) continuous, Complex F ( s )  = eCiiS l+tZTS 
real 

Discrete Discrete, f ( r )  = e-T-1 ,5H(r  + 1.5) Discrete, 
Fourier real r real 

Hartley Continuous, f ( x )  = e ~ " - ' . ~ H ( x  + 1.5) Continuous, 
real real 

Discrete Discrete, f  ( r )  = eC7-'. ' H ( r  t 1.5) Discrete, 
Hartley real 

Complex 

F ( s )  = Jyk j(x)e-12rsL tlx 

f ( x )  = Jrm F(s)e22""stl.s 

Real 
H ( s )  = c ~ ( - ~ ~ ~ s ) + ~ T s c ~ s ~ T s  

1+41iZS2 H ( s )  = JFm f ( ~ )  cas 2ns:c rln: 

Real I { ( ! / )  = N-' ~ i ~ - ~  f ( ~ )  C ~ S ( ~ K I / T / N )  

1 I , , , , 
J ( T )  = xril I I ( V )  C ~ S ( ~ X V T / , V )  

Fig. 1. Transform definitions, inverses, and examples. Ticks are at unit spacing. 
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influence on bird migration, I may start with 365 reports of how 
many birds were seen each day of the year. In such a case, and in 
many other cases, discrete data mean that the integrals, even though 
convenient, are themselves the approximations. The discrete Fourier 
transform, given N equispaced data, is an entity in its own right. 
Nevertheless, if it is open to us to choose N, we may make a choice 
that is too large or too small. Among the bad consequences are slow 
computing, unwanted sensitivity to measurement error, and aliasing 
(the spurious appearance of frequencies that are present in the 
samples but not in the world sampled). 

The Best Known Transforms 
In Fig. 1 terse definitions of several transforms are presented for 

reference together with the inversion formulas that enable the 
original function to be regained from knowledge of the transform. 
In addition, examples of each transform are presented. Enough 
examples of discrete versions are given to illustrate the distinct status 
of the discrete transforms, but for the most part only the original 
continuous definitions are given for want of any hscrete standard. 

The Laplace Transform 
A long and diverse history (1) characterizes the Laplace trans- 

form, which was in use long before Laplace, but became known to 
current generations mainly through its pertinence to the linear 
differential equations of transient behavior in electricity and heat 

conduction. Many tough technological problems of electric circuits 
that arose in connection with telegraphy, submarine cables and 
wireless, and related industrial process problems of thermal diffusion 
were cracked around the turn of the century, sometimes by novel 
methods such as Heaviside's, which were to be fixed subsequently to 
the satisfaction of academic mathematics by systematic application 
of the Laplace transform. Heaviside is remembered for stimulating 
the application of the Laplace transform to convergence of series, for 
Maxwell's equations, the delta function, the Heaviside layer, imped- 
ance, nonconvergent series that are usefd for computing, fractional 
order derivatives and integrals, and operational calculus. 

Figure 1 gives, as an example, the Laplace transform of 
Ax) = exp(-x - 1.5)H(x + 1.5). The Heaviside unit step function 
H(x) jumps, as x increases, from 0 to 1, the jump being where 
x = 0; one of its uses is as a multiplying factor to allow algebraic 
expression of functions that switch on. The transform of Ax), 
which is easy to verify by integration, is exp(l.5s)/(l + s); the 
transform variable s may be complex but must lie among those 
numbers whose real parts are greater than -1 (otherwise the 
integral does not exist). It is rather cumbersome to exhibit the 
complex transform graphically on the complex plane, so an illustra- 
tion is omitted. To invert the transform requires integration on the ., 
complex plane along a semicircular contour with indentations if they 
are necessary to circumvent points where the integrand goes to 
infinity (poles). The constan; c in the inversion formula is to be 
chosen to the right of all poles. 

To some extent, Laplace transforms were computed numerically 
but more typically development led to compilations of analytic 
transforms resembling the tables of integrals (2, 3). Programs for 

Name Nature of Example of 
of function function 
transform domain 

Nature of Nature of Example of 
transform transform transform 
variable 

Defining formula 
and the inverse 

variable 

Mellin Continuous, f  ( x )  = e-"H(x) Continuous, Real s  0 1 2 3  F M ( s )  = S," f (x )xs - Id2  
real complex F M ( s )  1 1  2  6 

f  ( x )  = & S,"Ji", F M ( ~ ) x - S d ~  

Hilbert Continuous, f  ( x )  = e - " ~ ~  cos 4nx Continuous, Real F H i ( x )  = -e-*"' sin 4nx F H i ( x )  = J-: 
real complex 

f ( 2 )  = - ' cC F .("')d+' " s-m % I - "  

Abel Continuous, f ( T )  = 1, T < 0.5 Continuous, Real FA ( s )  = m, s < 1, FA ( s ) = ~ J , M ~  
real complex 

$3 
Hankel Continuous, f ( r )  = 1, T < 0.5 Continuous, Real FHa(s )  = jinc S F  F H n ( s )  = 2n fp f  ( r ) J 0 ( 2 ~ . ~ r ) ~ d 1 .  

real 

Y=k 
complex 

Fig. 1 (cont.) 
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Radon 2-D, continuous, f ( x ,  y )  = 6 ( s  - a)6(y )  2-D, continuous, Real FRa(xl, 8 )  = 6(x1  - a cos 8 )  FRa(xl ,  8 )  = f-: f  ( x ,  y)dyi 
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real Y  

I 

real Y e 
Complicated inverse - I - x  2 



deriving the Laplace transform of the impulse response from 
electrical networks given diagrammatically are also available. Conse- 
quently, it is hardly ever necessary to derive Laplace transforms 
analytically today. The analytic solution of transients in electric 
circuits, a subject traditionally used for sharpening the minds of 
electrical engineers, is obsolescent because impulse responses and 
transfer functions have been concisely published (3, 4). Further- 
more, the advent of integrated circuits has meant that inductance is 
seldom included in new designs and that circuits containing more 
than two or three elements have become less common. Mature 
programs are also available for step-by-step integration of circuit 
differential equations. 

On the numerical side, the Laplace transform has also been largely 
eroded by use of the Fourier transform. This is because frequency o 
is a real quantity mathematically, and it ought to be possible to 
compute the behavior of an electrical, acoustical, or mechanical 
system without reference to the complex frequency s = jo. Certain- 
ly, the Laplace transform is computable over its strip of convergence 
from any single slice therein. Nevertheless, practitioners of control 
theory find it convenient to think on the complex plane of s in terms 
of poles and zeroes that are off the real frequency axis (using Bode 
diagrams and root-locus plots), and theirs is one tradition that keeps 
the complex plane alive; the convenience stems from the fact that the 
Laplace transform is analytic and is thus specifiable by its poles and 
isolated zeroes. There are problems that formerly were handled by 
the Laplace transform, with strict attention being paid to the strip of 
convergence, because the Fourier integral did not converge. These 
situations are now universally handled by Fourier methodology with 
the aid of delta function notation for impulses and their derivatives 
and no longer call for special treatment. When it comes to discrete 
computing, the impulse, and its associated spectrum reaching to 
indefinitely large frequencies, may in any case be forgotten. Thus, it 
has been wondered (5, p. 551) "whether the Laplace transform will 
keep its place in the standard mathematical methods course for very 
much longer," but it will never die out; a new balance between 
curricular segments will be struck. 

Why Transforms Are Useful 
Many problems can be posed in the form of a differential equation 

(or a difference equation, or an integral equation, or an integrodif- 
ferential equation) that has to be solved for some wanted function 
subject to stated boundary conditions or initial conditions. Laplace's 
equation in three dimensions describes the potential distribution set 
up by an array of electric charges, and the diffusion equation 
describes the heat flow distribution set up by a given distribution of 
heat. By applying a transformation such as the Laplace or Fourier to 
each term of such an equation, we arrive at a new equation that 
describes the transform rather than the original wanted function. 
The interesting thing about this procedure is that the new equation 
may be simpler, sometimes solvable just by algebra. We solve that 
equation for the transform of the solution and then invert. Not all 
differential equations simplify in this way; those that do are 
characterized by linearity and coordinate invariance (such as time 
invariance), and the presence of these characteristics in nature is 
responsible for a good deal of the numerical activity with trans- 
forms. Transfer functions, such as the frequency response curves of 
amplifiers, are corresponding manifestations of these same charac- 
teristics. The passage of a speech wave form through an amplifier is 
described by a differential equation that may be hard to solve, but, 
having used a transform to go to the frequency domain, we apply 
the transfer function, frequency by frequency, by complex multipli- 
cation to get the transform of the output. Then retransforming gives 

the output wave form. 
There is also a differential equation that describes the bending of 

a beam under the influence of a load distribution, which may be 
thought of as analogous to an input wave form, while the curve of 
deflection is the output wave form. Although Hookeys law, the first 
of the linear laws, may apply, we do not use transform methods. If 
we analyze the load distribution into spatially sinusoidal compo- 
nents and find the bending response to each component and linearly 
sum the responses, we will get the desired shape of the bent beam 
but there is no transfer function to facilitate getting the individual 
responses by simple algebra. The reason is that we have linearity but 
not space invariance-if we shift the load, the response does not 
shift correspondingly without change of shape; a sinusoidal load 
does not produce sinusoidal deflection. If, on the contrary, we delay 
the input to an amplifier or a vibratory mechanical system, the 
response is correspondingly delayed but is unchanged as to shape; 
furthermore, a sinusoidal input produces a sinusoidal output. 

The Fourier and Hartley Transforms 
Figure 1 illustrates by example that the Fourier transform in 

general is a complex function of the real transform variable s; 
consequently, two curves must be drawn, one for the real part (solid 
line) and one for the imaginary part (broken line). The example AT) 
for the discrete Fourier transform is based on samples of the 
previous Ax). Imaginary values of the discrete transform F(v) are 
shown as open circles. Three features may be noted: (i) no matter 
how closely samples are spaced, some detail can be missed; (ii) no 
outlying parts beyond a finite range are represented; and (iii) the 
indexing convention 0 to N - 1 has the effect of cutting off the left 
side of F(s), translating it to the right, and reconnecting it. To 
convey the nature of this third comment the points for T > Nl2 have 
been copied back on the left. 

The Hartley transform differs from the Fourier transform in that 
the kernel is cas 2rsx instead of exp( -i2rsx). The cas function, 
which was introduced by Hartley ( 6 ) ,  is defined by cas x = cos x + 
sin x and is simply a sinusoid of amplitude ~ shifted one-eighth of 
a period. The consequences of the change are that the Hartley 
transform is real rather than complex and that the transformation is 
identical to the inverse transformation. As may be obvious from the 
graphical example, the Hartley transform contains all the informa- 
tion that is in the Fourier transform and one may move freely from 
one to the other using the relations 

and 

The convenience that arises from familiarity with complex algebra 
when one is thinking about transforms loses its value in computing. 
What one thinks of as one complex product still means four real 
multiplications to computer hardware, which must be instructed 
accordingly. 

The Fast Fourier Transform 
In about 1805, C. F. Gauss, who was then 28, was computing 

orbits by a technique of trigonometric sums equivalent to today's 
discrete Fourier synthesis. To get the coefficients from a set of a 
dozen regularly spaced data, he could if he wished explicitly 
implement the formula that we recognize as the discrete Fourier 
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transform. To do this he would multiply the N data values AT) by 
the weighting factors exp( -~~TvT) ,  sum the products, and repeat 
these N multiplications N times, once for each value of v. But he 
found that, in the case where N is a composite number with factors 
such that N = nlnz, a computing advantage was gained by partition- 
ing the data into n2 sets of nl terms. Where N was composed of three 
or more factors, a further advantage could be obtained. Gauss wrote 
(7, p. 307) "illam vero methodum calculi mechanici taedium magis 
minuere, praxis tentatem docebit." He refers to diminishing the 

(16, 17), prime-factor partitioning, parallel-processed vectors (18), 
two-dimensional (19), in-place computation without bit reversal 
(scrambling) (20), and so forth, there is a corresponding Hartley 
version. The Hartley transform is elegant and clean and takes 
you to the other domain, regardless of which one you are in 
currently. Fast Hartley algorithms have been published in BASIC 
(16, 21), FORTRAN (16), PASCAL (22), and C (23) programs; 
versions in assembler languages exist; and various supercomputer 
libraries contain versions. Resident programs contain a copyright 

tedium of mechanical calculation, as practice will teach him-who statement (24). 
, . 

tries. This factoring procedure, usually into factors of 2, is the basis 
of the FFT algorithm, which is explained in many textbooks (8-12) 
and is available in software packages. The fast method burst on the 
world of signal analysis in 1965 and was for a time known as the 
Cooley-Tukey algorithm (13, 14), but, as the interesting history (15) 
of prior usage in computing circles became known, the term FFT 
became universal. 

Most FFT programs in use take advantage of factors by adopting 
a choice of N that is some power P of 2, that is, N = 2'. People with 
365 data points simply append sufficient zeros to reach 512 = 29 

When a Hartley transform is obtained, there may be a further step 
required to get to the more familiar complex Fourier transform. The 
time taken is always negligible, but, even so, the step is usually 
unnecessary. The reason is that, although we are accustomed to 
thinking in terms of complex quantities for convenience, it is never 
obligatory to do so. As a trivial example, suppose we want the power 
spectrum, which is defined by P(v) = [Re ~ ( v ) ] ~  + [Im ~ ( v ) ] ~ .  If 
we already have the Hartley transform H(v), then it is not necessary 
to move first to the complex plane and then get the power spectrum; 
the desired result is obtained directly as { [ ~ ( v ) ] ~  + [H(N - v)12}/2. . - -  

values. ~ h i s  might seem wastefd but an attendant feature is the Likewise, phase +(v), which is required much less often than P(v), is 
closer spacing of the resulting transform samples, which is advanta- defined by tan +(v) = Im F(v)/Re F(v). Again, one can get phase 
geous for visual presentation. Perhaps one could do the job faster, directly from tan[+(v) + ~ / 4 ]  = H ( N  - v)lH(v), thus circumvent- 
say, by factoring into 5 x 73. There are fast algorithms for 5 points ing the further step that would be necessary to go via the well-beaten 
and for many other small primes, but not for 73, as far as I know; it path of real and imaginary parts. 
is simply not practical to store and select from lots of special The encoding of phase by a real transform has added a physical 
programs for peculiar values of N. On the other hand, a significant dimension to the interest of the Hartley transform, which has now 
speed advantage is gained if one elects more rigidity rather than been constructed in the laboratory with light and microwaves (25- 
more flexibility, tailors one's data collection to a total of 4' values, 28) and has suggested a new sort of hologram. 
and uses what is referred to as a radix-4 program. Because 
1024 = 45, the radix-4 approach is applicable to N = 1024 data 
samples (or to 256 for example, but not to 512 unless one appends ~h 
512 zeros, which has one desirable effect, that a polygon drawn 

e Mellin Transform 
through the then twice as closely spaced transform s-ampies is much The vast majority of transform calculations that are done every 
smoother). day fall into categories that have already been dealt with, and much 

Much practical technique is involved. When the sampled input is of what has been said is applicable to the special transforms that 
not naturally zero outside the sampled range, packing with zeros remain to be mentioned. The Mellin transform has the property that 
introduces unwarranted discontinuities whose effects on the trans- FM(n + 1) is the nth moment of Ax) when n assumes integer values 
form, such as overshoot and negative-going oscillation, may be 1, 2, 3, . . . . The special value FM( l )  is the zeroth moment of, or 
undesirable. Packing with plausible (but unobserved) data can area under, Ax). But the transform variable does not have to be 
eliminate the undesired artifacts and is probably practiced in more integral or even real, so one can think of the Mellin transform as a 
cases than are admitted to. Investigators often mitigate the effects of sort of interpolate passing through the moment values. When the 
discontinuities in the data by multiplying by a tapering factor; they scale of x is stretched or compressed, for example, when Ax) is 
should then explain that they value freedom from negatives more changed to Aax), the Mellin transform becomes a -S  FM(s), a 
than accuracy of amplitude values of spectral peaks orthan resolu- 
tion of adjacent peaks. 

The FFT is carried out in P successive stages, each entailing N 
multiplications, for a total of NP. When NP is compared with N2 (as 
for direct implementation of the defining formula), the savings are 
substantial for large N and make operations feasible, especially on 
digital images, that would othenvise be unthinkable. 

The Fast Hartley Algorithm 

modification that leaves the position of features on the s axis 
unchanged and is useful in some pattern-recognition problems. 

If we plot Ax) on a logarithmic scale of x, a familiar type of 
distortion results and we have a new functionAe-"), whose Laplace 
transform is exactly the same as the Mellin transform of Ax). An 
equally intimate relation exists with the Fourier transform. Conse- 
quently, the FFT may be applicable in numerical situations. Because 
of the intimate relation with moments and with spectral analysis, 
Mellin transforms have very wide application. A specific example is 
given by the solution of the two-dimensional Laplace equation 
expressed in polar coordinates, namely, 

When data values are real, which is very commonly the case, the 
Fourier transform is nevertheless complex. The N transform values d2v/dS + v-'dv/dv + v-2d2~/d02 = 0 

are also redundant (if you have the results for 0 5 v 5 N/2, you can Multiply each term by F1 and integrate with respect to v from 0 to 
deduce the rest). This inefficiency was originally dealt with by the a. We get 
introduction of a variety of efficient unilateral algorithms, which d2~Mldo2 + S ~ F ~  = 0 
transformed one way only but in half the time of the FFT, and can 
now also be handled with calling programs such as REALFT (12) or Solve this for FM() and invert the transform to get the solution. In 
by dealing with the Hartley transform, which for real data is real and this example, a partial differential equation is converted to a simple 
is not redundant. For every variant of the FFT, such as radix-4 differential equation by the transform technique. 
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The Hilbert Transform 

As the example in Fig. 1 shows, the Hilbert transform, or 
quadrature function, of a cosinusoidal wave packet is a similar, but 
odd, wave form sharing the same envelope. But what do we mean by 
the envelope of an oscillation that only touches the intuitively 
conceived envelope at discrete points? The Hilbert transform pro- 
vides an answer in the form {lf(x)12 + V;ii(x)]2}1'2. The original 
wave packet reveals its phase at its zero crossings. But what is the 
phase at intermediate points? The Hilbert transform also supplies an 
instantaneous phase + in the form tan + = fHi(x)lf(x) The opera- 
tion T for the Hilbert transform is simply convolution with - l lax.  
It is known that the Fourier transform of - l l ax  is i sgn s, where sgn 
s is 1 for s > 0 and - 1 for s < 0. Therefore, by the convolution 
theorem, according to which the Fourier transforn~ of a convolution 
is the product of the separate Fourier transforms, it would seem that 
a fast Hilbert transform of AX) could be calculated as follows. Take 
the FFT of Ax), multiply by i for 0 < v < N12 and by - i  for 
N12 < v < N, put F(0) and F(NI2) to zero, and invert the FFT to 
obtain the Hilbert transform. This sounds straightforward but the 
procedure is fraught with peril, for two reasons. The first is that we 
are proposing to multiply a given function Ax) by -1/a[(x + 
const)] and to integrate from -m to a, but we are only given N 
samples. The extremities of - l lax  approach zero and have opposite 
signs, but there is infinite area under these tails, no matter how far 
out we start. Consequently, we are asking two oppositely signed 
large numbers to cancel acceptably. But how can we expect satisfac- 
tion when the convolving function -1Iax is not symmetrically 
situated about the extremes of the data range? The second reason is 
that we are asking for similar cancellation in the vicinity of the pole 
of llx. Experience shows that satisfactory envelopes and phases only 
result when Ax) is a rather narrow-band function. Under other 
circumstances an N-point discrete Hilbert transform can be defined 
and will give valid results free from worries about the infinities of 
analysis, but the outcome may not suit expectation. 

Multidimensional Programs 
Work with images involves two dimensions, electrostatics and x- 

ray crystallography involve three, and fluid dynamics involves four. 
All these cases can be handled with a one-dimensional FFT subpro- 
gram, or a fast Hartley, as follows. Consider an N x N data array. 
Take the one-dimensional (1-D) transform of each row and write 
the N transform values in over the data values. Now take the 1-D 
transform of each resulting column (19, 24). In three and four 
dimensions the procedure is analogous (29, 30). Further simple 
steps lead to the Hartley transform and to the real and imaginary 
parts of the Fourier transform if they are wanted, but usually they 
are not; more often the quadratic content (power spectrum) suffices. 

When a 2-D function has circular symmetry, as commonly arises 
with the response functions of optical instruments, not so much 
work is required, as explained below in connection with the Hankel 
transform. Cylindrical symmetry in three dimensions is essentially 
the same, while spherical symmetry in three dimensions is also 
referred to below. 

The Hankel Transform 
In two dimensions, where there is circular symmetry as expressed 

by a given functionflr), the 2-D Fourier transform is also circularly 
symmetrical. Call it FHa(x). It can be arrived at by taking the 111 2-D 
transform as described earlier, or it can be obtained from a single 1- 

D Hankel transform as defined in Fig. 1. The inverse transform is 
identical. There is apparently no opening for the Hartley transform 
because, in the presence of circular symmetry, the 2-D Fourier 
transform of real data contains no imaginary part. The kernel for the 
Hankel transform is a zero-order Bessel function, which is a 
complication that hampers the FFT factoring approach, but there is 
an elegant sidestep around this that is explained below in connection 
with the Abel transform. In three dimensions, under spherical 
symmetry, a different 1-D transform applies that is defined by 

4 n l  /(r)sinc(2sr)r2dr (3) 

The inverse transform is identical. 

The Abel Transform 
Most commonly, although not always, the Abel transform arises 

when a 2-D function g(x,y) has circular symmetry, as given byfir). 
The Abel transform (Fig. 1) then simplifies to 

In other words, if the given /(r) is represented by a square matrix of 
suitably spaced samples, then the Abel transform results when the 
columns are summed. There might not seem to be any future in 
trying to speed up such a basic operation, apart from the obvious 
step of summing only half way and doubling. However, when it is 
remembered that for each of ~ ~ 1 8  matrix elements we have to  
calculate (x2 + y2)If2 to find r, and thence Ar), it gives pause. The 
alternative is to proceed by equal steps in r; then the oversampling 
near the x axis is mitigated. But the variable element spacing in a 
column needs correction by a factor rl(2 - s2)If2, which takes more 
time to compute than (x2 + y2)lf2. This is an excellent case for 
decision by using the millisecond timer found on personal comput- 
ers. Of course, if many runs are to be made, the factors rl(r2 - s2)lf2 
can be precomputed and the preparation time can be amortized over 
the successive runs. 

With the Abel transform under control, we can now see a way of 
doing the Hankel transform without having to call up Bessel 
functions. The Abel, Fourier, and Hankel transforms form a cycle 
known as the FHA cycle (31), so that, if we take the Abel transform 
and then take the FFT, we get the Hankel transform (Fig. 2). The 
FFT required will not be complex, except in the extraordinary case 
of complex 2-D data; consequently, it will in fact be appropriate to 
use the fast Hartley to get the Hankel transform. Because of 
symmetry, the result will also be exactly the same as obtained with 
the FFT, if after taking the FFT we pay no attention to the 
imaginary parts that have been computed, which should all be zero 
or close to zero. 

The Radon Transform 
Consider a set of rotated coordnates (x1,y') centered on the (x,y) 

plane. The expression 

given for the Abel transform, representing a line integral in the y 
direction at a given value of x, would equal the line integral 
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in the rotated direction provided g(x,y) had circular symmetry as 
specified for the Abel transform. But, if g(x,y) did not have 
symmetry, then the line-integral values would depend both on x' 
and on the direction of integration. The set of integrals with respect 
to dy' is the Radon transform (32) of g(x,y), named after Johann 
Radon. Such integrals arise in computed x-ray tomography, where a 
needle beam of x-rays scans within a thin plane section of an organ 
with a view to determining the distribution of absorption coefficient 
in that plane. If there are N~ pixels for which values have to be 
determined, and since one scan will give N data, at least N different 
directions of scan spaced 180"lN will be needed to acquire enough 
data to solve for the N~ unknowns. In practice, more than 2 N  
directions are needed to compensate for diminished sample density 
at the periphery. The computation of a Radon transform is easy; the 
only tricky part is summing a given matrix along inclined directions. 
One approach is to rotate all the matrix and interpolate onto a 
rotated grid, for each direction of scan; but this may be too costly. 
At the other extreme one sums, without weighting, the matrix 
values lying within inclined strips, which, independently of inclina- 
tion, preserve unit width in the direction parallel to the nearer 
coordinate direction. How coarse the increment inclination angle 
may be depends on acceptability as judged by the user in the 
presence of actual data. 

The harder problem is to invert the line integral data to retrieve 
the wanted absorption coefficient distribution. A solution was given 
by Radon (33). Later Cormack (34, 35), working in the context of x- 
ray scanning of a solid object, gave a solution in terms of sums of 
transcendental functions. Other solutions (31, 36) include the 
modified back-projection algorithm used in computer-assisted to- 
mography scanners (32, 37). It works as follows (see Fig. 2). From 
the projection-slice theorem (31) we know that the Fourier trans- 
form of the projection P' (or scan) in any one direction is the central 
cross section or slice S' through the 2-D Fourier transform of the 
wanted distribution g(x,y). Because the density of polar coordinate 
samples is inversely proportional to radius in the Fourier transform 
plane, a simple correction factor followed by an inverse 2-D Fourier 
transform will yield the solution. But a way was found (36, 37), 
based on this theoretical reasoning, to entirely avoid numerical 
Fourier transforms. An equivalent correction can be directly applied 
to each projection P' as a simple convolution with few coefficients, 
after which the modified scans are accumulated on the (x, y) plane 
by back-projection to reconstitute g(x, y). Back projection means 

Fig. 2. The projection-slice theorem. A distributiong(x,y) has a projection P, 
in the y direction, whose l - D  Fourier transform is the slice S through the 2- 
D Fourier transform of g(x,y). In the presence of circular symmetry where 
g(x,y) = nr) ,  the projection P is the Abel transform ofnr).  The l -D  Fourier 
transform of P is the slice S as before, but the slice S is now the Hankel 
transform ofnr).  Thus the Abel, Fourier, and Hankel transforms form a cycle 
(31). The set of projections P' for all inclination angles of the (x',yf) 
coordinates constitutes the Radon transform. 

assigning the projected value at x' to all points of the (x,y) plane 
that, in the rotated coordinate system, have the abscissa X I .  Accumu- 
lation means summing the back-projected distributions for all 
inclination angles. 

Other Transforms 
The Walsh transform. A function defined on the interval [0,1] can 

be expressed as a sum of sines and cosines of frequency 1,2,3, . . . 
but can also be expressed as a sum of many other sets of basis 
functions. Among the alternatives, Walsh functions (10, 38, 39) are 
particularly interesting because they oscillate between values of + 1 
and - 1, a property that is most appropriate to digital circuits and is 
encountered in telecommunications and radar, though otherwise 
not common. Furthermore, multiplication by a Walsh function 
value takes much less time than multiplication by a trigonometric 
function. Walsh functions, not being periodic, are not to be 
confused with the square cosine and sine functions [I (x)= sgn(cos 
x) and 5 (x) = sgn(sin x); but on [0,2n] they do form a complete 
set from which any given function can be composed. They are also 
orthonormal (mutu&y orthogonal, and integral of square equal to 
unity, as with Fourier components), which leads to simple relations 
for both analysis and synthesis. The Walsh (or Walsh-Hadamard) 
transform has found usk in digital signal and image processing and 
for fast spectral analysis. Fast algorithms are available that use only 
addition and subtraction and have been implemented in hardware. 
A vast, enthusiastic literature sprang into existence in the 1970s, a 
guide to which can be found in the text by Elliott and Rao (10). 

The z transfovm. In control theory, in dealing with signals of the 
form 

and systems whose response to 6(t) is 

the response g(t) is the convolution integral 

This response is a series of equispaced impulses whose strengths are 
given by Ziaih,-i, an expression representable in asterisk notation for 
convolution by (g,) = {a,} * {h,} [in this notation the sequence {a,} 
sufficiently represents At)]. For example, a signal (1 1 1 1 1 1 . . .} 
applied to a system whose impulse response is (8 4 2 1) produces 
a response (1 11  1 1  1 . .  . } * { 8 4 2  1) ={8 12 14 15 15 1 5 . .  .}. 
This is the same rule as that which produces the coefficients of the 
polynomial that is the product of the two polynomials Zanzn and 
Zh,zn, as may be verified by multiplying 1 + z + z2 + z3 + z4 + 
z5 + . . . by 8 + 42 + 2z2 + z3. The z transform of the sequence 
(8 4 2 1) is, by one definition, just the polynomial 8 + 4z + 22' + 
z3; more often, one sees 8 + 42-' + 2z-2 + Y 3 .  If conversely we 
ask what applied signal would produce the response 
(8 12 14 15 15 1 5 . .  .}, we get the answer by long division: 8 + 
122 + 14z2 + 15r3 + 15z4 + 15z5 + . . .)/(8 + 4z + 2z2 + z3). 
Occasionally, one of the polynomials may factor, or simplify, 
allowing cancellation of factors in the numerator and denominator. " 
For example, the z transform of the infinite impulse response 
(8 4 2 1 0.5 . . .}, where successive elements are halved, simplifies to 
81(1 - 212). But with measured data, or measured system responses, 
or both, this never happens and the z notation for a polynomial 
quotient is then just a waste of ink compared with straightforward 
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sequence notation such as (8 12 14 15 15 15 . . .} * (8 4 2 1 . . . ) - I .  

Whenever sampled data are operated on by a convolution operator 
(examples would be finite differences, finite sums, weighted running 
means, finite-impulse-response filters), the z transform of the 
outcome is expressible as a product of z transforms. Thus, to take 
the finite difference of a data sequence, one could multiply its z 
transform by 1 - z, and the resulting polynomial would be the z 
transform of the desired answer; in a numerical environment one 
would simply convolve the data with (1 - 1). In control theory 
and filter design, the complex plane of z is valued as a tool for 
thinking about the topology of the poles and zeroes of transfer 
functions. 

Convolution 
Sequences to be convolved may be handled directly with available 

subprograms for convolution and inverse convolution that operate 
by complex multiplication in the Fourier transform domain. When 
two real sequences are to be convolved, one can do it conveniently 
by calling the two Hartley transforms, multiplying term by term, 
and calling the same Hartley transform again to get the answer. 
Some subtleties are involved when the sequences are of unequal 
length (16). But if one of the sequences is short, having less than 
about 32 elements depending on the machine, then slow convolu- 
tion by direct evaluation of the convolution sum may be faster, and a 
shorter program will suffice. When the Fourier transform is used, 
the multiplications are complex but half of them may be avoided 
because of Hermitian symmetry. Software packages such as 
CNVLV (12) are available that handle these technicalities by calling 
two unilateral transforms or two equivalent subprograms. Fast 
convolution with prime factor algorithms is also available if general 
purpose use is not a requisite. 
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