
the tyrosine kinase region of erbB-2, was ligated to 
the 12.3 Sal I-Bcl I fragment of the LTR-EGFR 
containing the EGFR cDNA depleted of its tyrosine 
kinase region, to yield the L T R - E G F R I c ~ B - ~ ~ ~  
expression vector. The reciprocal recombination 
yielded the LTR-erbB-2/EGFRTK expression vec- 
tor; in the latter case, because of the presence of a 
second Bcl I site at position 3078 in the EGFR 
cDNA (IS), an oligonucleotide was used to restore 
the 19 codons of EGFR encompassed between the 
two Bcl I sites. 

22. M. F. White et al., Cell 54, 641 (1988). 
23. D. K. Morrison, D. R. Kaplan, U. Rapp, T. M. 

Roberts, Proc. Natl. Atad. Sci. U.S.A. 85, 8855 
(1988); D. K. Morrison et al., Cell 58, 649 (1989). 

24. M. I. Wahl et al., Mol. Cell. Biol. 9, 2934 (1989); J. 
Meisenhelder, P. G. Suh, S. G. Rhee, T. Hunter, 
Cell 57, 1109 (1989); B. Margolis et al., ibid., p. 
1101. 

25. C. J. Molloy et al., Nature 342, 711 (1989). 
26. D. J. Slamon et al., Science 235, 177 (1987). 
27. C. J. Quaife, C. A. Pinkert, D. M. Omitz, R. D. 

Palmiter, R. L. Brinster, Cell 48, 1023 (1987); Y. 
Suda et al., EMBO J. 6,4055 (1987); W. J. Mder,  
E. Sinn, P. K. Pattengale, R. Wallace, P. Leder, Cell 
54, 105 (1988). 

28. Antisera were prepared against synthetic peptides 
derived from the predicted amino acid sequences of 
EGFR and erbB-2 (18). Antipeptide antibodies M1, 
M6, and M7 were obtained by immunizing rabbits 

The Effect of Electrical Coupling on the 
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Neurons with oscillatory properties are a common feature of the nervous system, but 
little is known about how neural oscillators shape the behavior of neuronal networks 
or how network interactions influence the properties of neural oscillators. Mathemati- 
cal models are used to examine the effect of electrically coupling an oscillatory neuron 
to a second neuron that is either silent or tonically firing. Models of oscillatory neurons 
with varying degrees of complexity show that this coupling can either increase or 
decrease the frequency of an oscillator, depending on its membrane potential wave 
form, the state of the neuron to which it is coupled, and the strength of the coupling. 
Thus, electrical coupling provides a flexible mechanism for modifying the behavior of 
an oscillatory neural network. 

N EURONS THAT DISPLAY INTRINSIC 

oscillatory properties are impor- 
tant components of many biologi- 

cal neural networks (1, 2). In particular, 
networks that generate rhythmic motor pat- 
terns often use neurons with oscillatory 
membrane properties (2). Despite consider- 
able advances in our understanding of 
rhythmic neural networks, we do not know 
precisely how the frequency of such net- 
works is controlled. Recent studies of the 
pyloric network of the lobster stomatogas- 
tric ganglion (STG) showed that the fre- 
quency of the oscillator anterior burster 
(AB) neuron is influenced by electrical cou- 
pling to other neurons (3). Specifically, in 
the presence of the peptide proctolin the 
frequency of the pacemaker-driven network 
was about 1 Hz, whereas the frequency of 
the isolated AB neuron was about 2 Hz; in 
this study the investigators concluded that 
the electrically coupled neurons were pro- 
viding a "load" on the pacemaker, slowing it 
down (3). 

We are currently developing network 
models that contain oscillatory elements (4). 

While studying the effect of electrical cou- 
pling on an oscillating neuron within these 
models, we found that the situation is not 
nearly as simple as the "loading" picture 
would imply. Instead, electrical coupling 
provides a flexible way of modulating the 
frequency of an oscillator that depends criti- 
cally on properties of the oscillator and of 
the coupled cell and on the coupling 
strength. 

We begin by considering the effect of 
electrical coupling in a simple model of a 
bursting neuron based on a modified form 
of the FitzHugh-Nagumo equations (5 ) .  In 
this approach we do not model individual 
action potential spikes but consider a cell 
membrane potential v with action potentials 
either removed or averaged over. In the 
particular case of the STG, this is a good 
approximation because its neurons release 
neurotransmitter as a graded function of 
membrane potential, and action potentials 
contribute little (6). In the general case, it is 
reasonable because the integrated contribu- 
tion of a given action potential spike to the 
current through the resistive coupling is 
quite small. 

To construct the model, we divide the 
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brane current s. By current conservation, 

The slow component of the membrane cur- 
rent is determined,by another differential 
equation 

The parameter T determines the time scale 
for variations of s. In contrast to the usual 
approach (S), our fast current Jv) is purely 
resistive but at intermediate membrane po- 
tentials it has a negative-resistance region 
that connects two positive-resistance regions 
at low and high potentials. 

Depending on the exact form ofAv) and 
on the values of the parameters C, a, and T, 

neurons modeled by these equations can be 
oscillatory, can display plateau properties, 
can be tonically active, or can be silent. For 
the oscillatory case, the neuron can be pre- 
dominantly hyperpolarized (top left of Fig. 
1) or predominantly depolarized (top right 
of Fig. 1) during its cycle, depending on the 
value of an additive constant in the expres- 
sion forf(v). 

To explore the effects of electrical cou- 
pling, we take for the "external" current 

where g determines the strength of the elec- 
trical coupling and up is the membrane 
potential of a passive cell to which the 
oscillator is coupled. The membrane current 
for the passive cell is modeled as purely 
resistive and fast, so including the electrical 
coupling to the oscillator we have 

Here FP is the resting potential and Cp is the 
conductance of the passive cell in the ab- 
sence of electrical coupling. 

Figure 1 shows the result of increasing the 
coupling conductance between a hyperpo- 
larized passive cell and two different oscilla- 
tors. It is clear that the effect of electrical 
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coupling is quite different for the two wave 
forms shown. In the left panel, the oscillator 
period increases as the coupling strength 
increases, as one might expect. In contrast, 
the oscillator shown in the right panel 
speeds up when coupled to a silent neuron 
until it reaches a maximal frequency after 
which a further increase in the coupling 
strength causes it to slow down. If we had 
taken the passive cell to be tonically firing 
(Gp depolarized relative to v), these results 
would be reversed, with the oscillator at the 
left in Fig. 1 initially speeding up and then 
slowing down as g increases while the one 
at the right simply slows down. Thus, with- 
in this model the change in the oscillation 
frequency depends on the state of the pas- 
sive cell, on the strength of the electrical 
coupling, and, in addition, on details of the 
oscillator wave form. 

To calculate the effect of electrical cou- 
pling on the period of an oscillator, we 
divide the oscillatory cycle into segments, 
each characterized by a monotonically 
changing membrane potential. We deter- 
mine how each segment is modified by 
coupling to a passive cell and then sum these 
results to get the total effect. Consider a 
segment during which the membrane poten- 
tial changes from an initial value vi to a final 
value vf. We assume that during this portion 
of the cycle the oscillatory neuron can be 
modeled by Eqs. 1 and 2 and that vi and vf 
do not change with g, at least for small g. 
For the fast component of the current in this 
section of the cycle we use a simple resistive 
form 

Fig. 1. Effect of coupling 
conductance on the frequen- 
cy of model oscillators. The 
jcle  of neuron a is dorni- 
nated by a hyperpolarized 
phase, whereas neuron b has 
a longer depolarized phase. 
Neuron c is passive and hy- 
perpolarized; its resting po- 
tential equals the minimum 
potential during oscillation 
in the uncoupled cells a and 
b. As the coupling conduc- 
tance g is increased, the net- 
work containing neuron a 
slows down while that con- 
taining neuron b first speeds 
up and then slows down as 
shown in plots of period 
against coupling conduc- 
tance. All units are arbitrary. 

Fig. 2. Inward and outward current portions of 
the oscillator bursts. Portions of the cycle with 
inward currents are stippled. (Top) A model 
neuron in which the cycle is dominated by an 
inward current phase. Coupling this cell to a 
hyperpolarized passive cell adds an outward cur- 
rent, which slows down the depolarization of the 
cell, increasing its period. (Bottom) A model 
neuron in which the cycle is dominated bv an 
outward current phase: Coupling this cell ;o a 
hyperpolarized passive cell adds an outward cur- 
rent, terminating the plateau and thus decreasing 
the period. For larger coupling, the inward and 
outward portions of the cycle become equal, at 
which point this neuron behaves like the one 
shown on top. 

The peculiar notation for the reversal poten- 
tial is used because the parameter VR corre- 
sponds to the reversal potential of the 
steady-state current in the model. The pa- 
rameter a can actually be removed from the 
model because G + a is just the steady-state 
conductance with G the instantaneous con- 
ductance. Both of these results can be ob- 
tained if the time derivatives in Eqs. 1 and 2 
are set equal to zero and s is eliminated. In 
the absence of electrical coupling, the por- 
tion of the cycle we are discussing takes a 
time t to be completed. When a small electri- 
cal coupling of strength g is included, this 
time changes to t + At. Using an approxi- 
mate analytic solution of the model, we find 

Fig. 3. Effect of coupling 
conductance on more realis- 
tic model neurons. Neurons 
A and B are constructed 
from differential equations 
describing five membrane 
currents (7) and differ only 
in the value of the Ca2+ 
conductance and the Ca2+- 
activated K+ conductance, 
both of which are larger in 
neuron B than in neuron A. 
Neuron C has simple Hodg- 
kin-Huxley (8) characteris- 
tics. Its resting potential is 
equal to the minimum po- 
tential during oscdlation in 
the uncoupled cells A and B. 
The action potentials of 
neuron C in the lower right 
trace have been clipped for 
ease of presentation. 
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This expression for At is fairly complicat- 
ed, but its basic features can be understood 
intuitively. The first term in the bracket 
(which is always positive) tends to slow the 
oscillator down regardless of its wave form 
or the state of the passive cell. On the other 
hand, the second term in the bracket de- 
pends on the shape of the wave form 
through vi and vf and on the state of the 
passive cell through ijp. If the cell oscillates, 
the denominator of this term is always posi- 
tive, so its sign depends on whether v is 
rising (vf - vi > 0) or falling (of - vi < 0) 
and on whether F,, is depolarized or hyper- 
polarized relative to VR. TO explain this 
dependence, let us take the passive cell to be 
hyperpolarized. Then, this term tends to 
slow down a portion of the oscillator cycle 
characterized by a net inward current 
(vf > vi) and to speed up one with net 
outward current (vf < vi) . This makes sense 
because for v, < VR the resistive current is 
itself outward. Of course, for a depolarized 
passive cell (up > vR) the situation is just 
reversed. 

One can estimate the complete effect of a 
small electrical coupling on the oscillator 
wave form by summing the result of Eq. 6 
over all the different segments making up 
the complete cycle. The time change for any 
section is proportional to its duration. Thus, 
the overall effect will depend on whether the 
complete cycle is dominated by portions 
that are lengthened or shortened when the 
coupling is changed. This is illustrated in 
Fig. 2, where we have indicated regions of 
inward and outward current flow for the 
oscillators of Fig. 1. Roughly, an oscillator 
with a wave form dominated by periods of 
inward current will slow down when electri- 
cally coupled to a hyperpolarized passive cell 
and speed up when the passive cell is depo- 
larized. An oscillator dominated by periods 
of outward current flow will experience 
reversed effects. 

The previous explanation, whle intuitive- 
ly reasonable, was developed with the use of 
a very simplified oscillator model. To assure 
ourselves that this treatment is applicable to 

a neural oscillator, we consider a more realis- 
tic model based on differential equations 
that describe the voltage and time depen- 
dences of five membrane conductances (7). 
By vatying the conductances of this model 
we can construct oscillatory neurons with 
different wave forms (see Fig. 3) (7). We 
then electrically couple the model oscillator 
to a neuron with simple Hodgkin-Huxley 
characteristics (8). 

Figure 3 shows that this mechanistically 
realistic model produces behavior similar to 
that of the simplified model previously de- 
scribed. The period of the oscillator on the 
left increases as the strength of the electrical 
coupling increases, whereas the period of 
the oscillator on the right first decreases to a 
minimal value and then increases. Again we 
have taken the passive cell to be silent. 

The results described here have important 
implications for networks in which neurons 
with oscillatory properties are electrically 
coupled to other neurons. We have shown 
that the period of an oscillating neuron may 
be either increased or decreased by its elec- 
trical coupling to another neuron. Thus, 
neuromodulatory substances that change 
the electrical coupling strength (9) may have 
complex effects on the emergent frequency 
of an oscillatory network. In addition, any 
neurotransmitter or other modulator that 
changes the shape of the burst of an oscillat- 
ing cell by modulating the underlying volt- 
age and time-dependent conductances (10) 
may change the effect that other neurons 
electrically coupled to the oscillator have on 
its period. In the particular case of the STG, 
many substances modulate the AB neuron 
(1 1). If, as has been suggested (IZ), the ionic 
mechanisms underlying the AB burst are 
widely variable, then the effect of other 
electrically coupled neurons on the frequen- 
cy of the AB neuron may be substantially 
different in the presence of various modula- 
tors. Earlier work demonstrated the effect of 
simultaneous electrical and chemical cou- 
pling to an oscillatory neuron (13). The 
flexibility demonstrated here adds to our 
understanding of how the output of a neural 

network can be modulated in a behaviorally 
useful manner. 
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