
A Cellular Automaton Model of Excitable Media 
Including Curvature and Dispersion 

Excitable media are spatially distributed systems characterized by their ability to 
propagate signals undamped Aver long distances. Wave propagation in excitable media 
has been modeled extensively both by continuous partial differential equations and by 
discrete cellular automata. Cellular automata are desirable because of their intuitive 
appeal and efficient digital implementation, but until now they have not served as 
reliable models because they have lacked two essential properties of excitable media. 
First, traveling waves show dispersion, that is, the speed of wave propagation into a 
recovering r e ~ o n  depends on the time elapsed since the preceding wave passed 
through that ;egion. second, wave speed depends on wave front curvature: curved 
waves travel with normal velocities noticeably different from the plane-wave velocity. 
These deficiencies of cellular automaton models are remedied by revising the classical 
rules of the excitation and recovery processes. The revised model shows curvature and 
dispersion effects comparable to those of continuous models, it predicts rotating spiral 
wave solutions in quantitative accord with the theory of continuous excitable media, 
and it is parameter&d so that the spatial step size of the automaton can be adjusted for 
finer resolution of traveling waves. 

ERIODIC TRAVELING WAVES IN EX- excitation variable usually changes on a 
citable media provide dramatic illus- much faster time scale than the recovery 
trations of spontaneous spatiotempo- variable, singular perturbation theory has 

ral organization in biological, chemical, and been useful in analyzing wave propagation 
physi&l systems. In biological contexts in such models (5-8). This theory highlights 
these propagating waves are used for com- two important effects: dispersion and curva- 
munication, as in nerve axons and in neuro- ture. Dispersion refers to the dependence of 
muscular tissue (1, 2). Similar waves of wave speed on the extent of recovery of the 
excitation are observed in homogeneous 
chemical systems (2, 3) and on catalytic 
surfaces (4). Wave propagation in these 
systems depends on a subtle interplay be- 
tween the local dynamics of excitation and 
the diffusive coupling of neighboring spatial 
domains. The local dynamics of an excitable 
medium is characterized by a rest state that 
is stable with respect to small perturbations; 
however, when the system is perturbed be- 
yond a certain threshold, it responds by 
going through a typical cycle of excitation 
and recovery to the rest state. A local region 
of excitation can then spread by diffusion to 
neighboring regions of resting (or recover- 
ing) medium. 

Continuous partial differential equation 
(PDE) models of excitable media (2, 5-7) 
are often based on phase plane diagrams like 
that in Fig. la, which represents the local 
interactions between an excitation variable 
(u) and a recovery variable (v). Because the 
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Fig. 1. (a) Typical phase plane diagram for an 
excitable medium. The excitation variable (u) and 
the recovery variable (v) interact locally according 
to the ordinary differential equations: duldt = 
 flu,^), dvldt = g(u,v). The loci flu,v) = 0 and 
g(u,v) = 0, called "ndclines," are plotted in the 
(u,v) plane. There is a unique rest state at the 
intersection of the ndclines. The rest state is 
"excitable" in that small perturbations are irnme- 
diately damped out, but larger perturbations (past 
threshold) trigger a long excursion during which 
(i) the excitation variable increases rapidly, caus- 
ing (ii) a slower and temporary increase in v, 
followed by (iii) rapid extinction of u and (iv) 
slow decrease of v back to the rest state. For the 
Belousov-Zhabotinskii reaction, the excitation 
variable is bromous acid and the recovery variable 
is ferroin. For heart tissue, we can identify u with 
membrane potential and v with slow transmem- 
brane ionic currents. (b) The local rules of the 
cellular automaton. The excitation variable u as- 
sumes two values: 0 [corresponding to the left- 
hand branch of the ndcline flu,v) = 01 and 1 
(the right-hand branch). The recovery variable v 
increases when u = 1 and decreases when u = 0. 
Waves of excitation (+) can be triggered if the 
cell is sufficiently recovered (box on left), and 
waves of deexcitation (6) can be triggered if the 
cell is sufficiently excited (box on right). 

medium to the rest state. During periodic 
signaling (for instance, periodic firing of a 
sensory neuron in response to pressure), the 
excitable medium does not have enough 
time to recover completely to the rest state 
before the next wave is triggered. Conse- 
quently, the value of v at the moment of 
triggering is larger than the resting value of 
v (see Fig. la) .  At larger values of v, the 
medium is farther from threshold and re- 
quires greater excitation to trigger the next 
wave. To build up this extra excitation re- 
quires that the wave moves more slowly 
than a solitary wave propagating into fully 
recovered medium. This dependence of 
wave speed (c) on temporal period (T) is 
called the dispersion relation. In addition, 
the theory of traveling waves demonstrates 
that the curvature of wave fronts plays an 
essential role in the propagation of waves in 
two and three dimensions. Singular pertur- 
bation analysis of curved wave fronts leads 
to a relation between the normal velocity 
(N) and the curvature (K)  of a propagating 
wave : 

where c is the speed of an uncurved (planar) 
wave front and D is the diffusion coefficient 
of the excitation variable. Equation 1 has 
been verified experimentally in a chemical 
excitable medium by Foerster et al.  (9). 

Rotating spiral waves are periodic pat- 
terns, and, far from the center of rotation, 
where the waves are nearly planar (K O), 
wave speed and period must satisfy the 
dispersion relation c = F ( q .  Close to the 
pivot point where wave front curvature is 

u =1 
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appreciable, the curvature equation, Eq. 1, 
yields a second constraint between wave 
speed and period (5-7, lo), T = G(c;ro), 
which is parameterized by ro, a measure 
of the core size of the spiral. The intersec- 
tion of the two curves, c = F ( T )  and T = 
G(c;ro), determines the unique values of 
c and T for a spiral wave of core size 
ro. It is clear that, to understand the dy- 
namics of rotating spiral waves in ex- 
citable media, we must have a realistic de- 
scription of the effects of dispersion and 
curvature. 

The theory of wave propagation in con- 
tinuous models of excitable media does not 
obviate the need for numerical simulations. 
First of all, singular perturbation theory is 
an approximation tool, strictly valid only in 
the limit E + 0 (where E is the ratio of time 
scales for changes in the excitation and 
recovery variables). For real excitable media, 
with finite values of E, we must check the 
results of the theory against numerical solu- 
tions of the underlying PDEs. Second, nu- 
merical simulations are an invaluable tool in 
exploring the complicated behavior of two- 
and three-dimensional excitable media. In- 
deed, most of the interesting behavior of 
these systems was found originally in nu- 
merical and experimental work, and the 
theoretical analysis came later. Because ex- 
tensive numerical simulations of stiff (r 
small) PDEs in two and three dimensions 
are difficult and costly (and were not even 
possible until recently), a different approach 
for exploring the temporal evolution of ex- 
citable media, based on discrete models, has 
played an important role. 

The discrete approach was initiated in 
1946 by Wiener and Rosenblueth (11), who 
were modeling rapid heart beat by high- 
frequency waves rotating around "obstacles" 
in a discrete model of excitable cardiac mus- 
cle. Later investigators demonstrated that 
rotating waves can persist even in unob- 
structed excitable media (12). In the discrete 
("cellular automaton") approach an excit- 
able medium is represented by a grid of 
excitable elements that interact spatially with 
their nearest neighbors. Each element can 
exist in one of three states, resting, excited, 
or refractory, and these states may change in 
discrete time steps. A cell in the rest state 
will remain at rest unless one of its neigh- 
bors is excited, in which case the resting cell 
becomes excited in the next time step. Cells 
in the excited state become refractory, and 
refractory cells return to rest. Several elabo- 
rations of this basic idea have appeared (13, 
14). 

Cellular automaton models of excitable 
media have been popular for two reasons. 
First, they are intuitively appealing: com- 
pared to continuous models, they are easily 

described and their behavior is easily com- 
prehended. Second, they are easily imple- 
mented on digital computers, and, com- 
pared to numerical integration of PDEs, 
they run exceedingly fast. For the most part, 
cellular automaton models of excitable me- 
dia have been kept quite simple, but in 
keeping to simplicity two critical features of 
wave propagation in excitable media, curva- 
ture and dispersion, have been left out. It is 
our intention to design a realistic cellular 
automaton model of excitable media that 
includes these effects. 

We model an excitable medium by a 
rectilinear grid of cells, using no-flux bound- 
arv conditions. Each cell is characterized bv 
internal state variables, and the state of a cell 
changes discretely in time depending on the 
state of the cell itself and the states of its 
neighbors. The dynamics of the cell itself 
should rdect the typical phase portrait of 
excitable media (Fig. la). Therefore, we 
introduce two state variables: an excitation 
variable (u) and a recovery variable (v). We 
assume that u takes only two values, 0 and 1, 
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Fig. 2. Normal velocity as a function of curvature 
for concave and convex wave fronts. For this data 
set we took r = 3 and koexci = 8. The other 
parameter values are irrelevant to the curvature 
effect. 
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Fig. 3. The dispersion and curvature relations for 
the cellular automaton. The dispersion relation 
(solid line) was calculated for the parameter val- 
ues: V,,, = 100, Vwco = 90, VeXci = 85, g,, = 
25, gdOm = 20, koexci = 5, kO,, = 7. The curva- 
ture relation (dashed line) was calculated fiom the 
approximate analytical equation in (10) for 
ro = 2.5 and D = 1.6. 

Fig. 4. Spiral wave solution of the cellular auto- 
maton for the parameter values given in Fig. 3. 
The size of the field is 100 by 100. This solution 
was initiated by a "broken" wave front that 
extended from the right boundary to the middle 
of the domain. 

whereas v takes integer values 0, 1, 2, . . ., 
V,,. The state u = 0, v = 0 is the rest 
state. If u = 1, the cell is in an "excited" 
state, and if u = 0, v # 0, the cell is in a 
"recovering" state. In an excited state v 
should increase from time step t to t + 1, 
and in a recovering state v should decrease. 
Therefore, we specify that 

If u, = 1, then v , + ~  = min{v, + g,,,, V,,) 
(2) 

and 

If U, = 0, then v,+l = max(v, - gd,,., 0 )  
(3) 

where g,, and gdown are positive integers. 
(We choose linear kinetics for simplicity.) In 
the absence of interactions with neighbors, 
the local rules should permit a cell to jump 
autonomously from the excited state to the 
recovering state when v reaches Vmax but 
not fiom the recovering state to the excited 
state. We express this as follows: 

If u, = 0, then u,+l = O (4) 
If U, = 1, V, f Vmax, then u,+l = 1 (5) 

These local rules specify a discrete version of 
the typical phase portrait of excitable media 
(Fig. lb). 

A resting or recovering cell can become 
excited only by interaction with its neigh- 
bors. We assume that a cell becomes excited 
if and only if the number of excited cells 
withii its neighborhood exceeds a certain 
threshold, kexci (kexci reflects the "excitabil- 
ity" of the medium: smaller values of k,,,i 
represent higher excitabilities). Further- 
more, a cell can become excited only if it is 
sufliciently recovered, that is, 0 5 v, < 
Vexci < Vmax. In this way we divide recov- 
ering cells into two categories: absolutely 
refractory (Vexci 5 v 5 V,,) and relatively 
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refractory (0 < v < Vexci). Similarly, we 
propose that an excited cell can jump "pre- 
maturely" to the recovering state if it is 
neighbored by a sufficient number of resting 
and recovering cells (k,,,,), and if 0 < Vreco 
< v,  < V,,,,,. In the context of excitable 
media, we insist that Vexci < Vreco. 

To  ensure that the excitability of the 
medium depends on its extent of recovery, 
we assume that kexci is an increasing func- 
tion of v on the interval 0 5 v 5 Vexci. 
That is, for a relatively refractory cell to 
become excited, we require a greater 
amount of excitation in its neighborhood. 
Similarly, we make kreco a decreasing func- 
tion of v on the interval VIec0 I v I V,,, 
(15). 

The neighborhood of a cell is taken to be 
the square of edge-length 2r + 1 (r = 1, 2, 
3 . . .) centered on the cell (16). We call r the 
radius of the neighborhood. Larger neigh- 
borhoods give finer spatial resolution to our 
automaton: as r increases, we increase the 
number of grid points per unit length (the 
length over which spatial interactions are 
effective in one time step). For instance, 
large values of r allow a range of propaga- 
tion velocities of planar waves, which is 
clearly necessary to model the effects of 
dispersion. 

The effects of curvature on wave propaga- 
tion in excitable media are seen most dra- 
matically when waves from two different 
sources collide (9). We simulated wave colli- 
sions with our automaton, fitting each suc- 
cessive position of the wave front with 
hyperbolas in the regions of largest positive 
and negative curvature. From the best fit- 
ting hyperbolas we calculated normal veloci- 
ties (N) and curvatures (K). These data 
were then fitted by a straight line, as sug- 
gested by Eq. 1. A typical result is illustrated 
in Fig. 2. 

For all parameter values the dependence 
of N on K is linear, verifying that our 
automaton satisfies Eq. 1. The slope of the 
line (D, the diffusion coefficient of the exci- 
tation variable) depends on the radius r and 
increases in direct proportion to the area of 
the neighborhood, D(r) = 0.032(2r + l)', 
exactly what would be expected of a diffu- 
sion coefficient as the spatial grid is made 
finer. If we equate D(r) to the measured 
diffusion coefficient of the excitation vari- 
able of a particular excitable medium, we 
have one equation connecting the time and 
space scales of the automaton. We obtain a 
second relation between these two un- 
knowns by equating the speed of a solitary 
planar wave in the automaton to the mea- 
sured speed of such a wave in the excitable 
medium. In this way we can associate abso- 
lute values to the time step and spacing of 
cells in our automaton (17). 

To calculate dispersion relations, c versus 
T, we simulated our automaton on a ring- 
shaped domain. We initiated a pulse travel- 
ing in one direction around the ring. After 
transients had died out, we measured the 
period of circulation of the pulse. From the 
period T and wavelength h (circumference 
of ring), we calculated the average speed 
c = A/T. A representative result is presented 
in Fig. 3. 

For these same parameter values, the 
unique spiral wave solution of the cellular 
automaton is illustrated in Fig. 4. The spiral 
rotates with a period of 11 time steps and 
has an asymptotic wave speed of 2.5 cells 
per time step (18). According to singular 
perturbation theory (5, 6), the wave speed 
and period of spiral wave solutions to reac- 
tion-diffusion equations should satisfy 
simultaneously both the dispersion relation, 
c = F ( T ) ,  and the curvature relation, T = 

G(c;ro). For the cellular automaton model, 
the calculated spiral wave is consistent with 
the dispersion relation and the curvature 
relation for core size ro = 2.5 (Fig. 3). To be 
completely consistent, this predicted value 
of ro should agree with observations of the 
core of the spiral wave in Fig. 4. It is not 
easy to determine from the computations 
the radius ro required by theory, but a 
slightly smaller radius r, can be estimated as 

follows. At each time step we determine the 
position of the "phase change" (7) point, q, 
which lies at the junction of the wave front 
(cells where u switches from 0 to 1)  and the 
wave back (from 1 to 0). During one rota- 
tion the phase change point traces a path 
surrounding an area that we equate to nr;. 
In this fashion we measure r, = 2.2 for the 
spiral wave in Fig. 4, a value that is in 
excellent agreement with the expected value 
of r,,. 

The spiral depicted in Fig. 4 rotates more 
or less rigidly around a pivot point, but for 
other parameter values we have observed (i) 
meandering spiral cores (19) and (ii) chaotic 
self-reproduction of spirals by spontaneous 
wave-breaking (1, 20) (Fig. 5). The sponta- 
neous multiplication of spiral wave cores in 
an excitable medium may have relevance to 
the onset of ventricular fibrillation. Ventric- 
ular flutter ("tachycardia" or rapid heart 
beat) is widely attributed to the generation 
of a high-frequency rotating spiral wave in 
the ventricular myocardium (2, 12, 21). Al- 
though ventricular flutter is not in itself life- 
threatening, it may degenerate into fatal 
fibrillation (a chaotic disorganized rapid 
convulsion of the ventricle) by the spontane- 
ous breakup of the original spiral wave (or 
pair of counterrotating spirals) into myriad 
spiral sources distributed throughout the 

Fig. 5. Chaotic self-reproduction of spiral waves. (Parameter values: grid = 150 by 150, u = 3, 
V,,, = 100, V,,,, = 70, = 65, g,, = 20, gdown = 5, koeXci = 0, koreCo = 5.) The original spiral 
wave is breaking near the lower edge ofthe domain, (a) t = 155, (b) t = 157, (c )  t = 159. The breakup 
generates a pair of counterrotating spiral waves in addition to the original rotor. One member of the 
counterrotating pair is absorbed by the boundary shortly after its creation, leaving two spirals of the 
same sense of rotation, (d) t = 319. Next, the original spiral disappears, but the remaining rotor 
multiplies itself by spontaneous wave-breaking until there are many rotors in the domain, (e) t = 584. 
The process of birth, meandering, and death of rotors continues, (f) t = 667, so that the pattern is ever- 
changing in an unpredictable fashion. The fundamental period of the process, determined by Fourier 
analysis, is 25 time steps. 
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ventricle. The breakup process is not thor- 
oughly understood, but it is usually attribut- 
ed to spatial inhomogeneities of the cardiac 
muscle (13), for instance, local regions of 
inexcitability caused by coronary artery dis- 
ease. Our cellular automaton model (Fig. 5) 
suggests that the breakup of a spiral wave 
may occur in a spatially homogeneous medi- 
um by spontaneous processes implicit in the 
mechanism of excitability. Close examina- 
tion of the calculations reveals that the 
breakup of excitation waves occurs because 
the wave front is slowed down by momen- 
tary refractoriness of the recovering medium 
ahead of the wave, but the wave back con- 
tinues propagating at a greater speed than 
the wave front. The wave back catches up to 
the wave front and annihilates it (Fig. 5, a 
through c) (22). There follows a complicat- 
ed sequence of spiral wave creation and 
destruction, generating complicated tran- 
sient patterns (Fig. 5, d through f), until at 
t = 9479 all spontaneous excitation ceases. 
Since for heart tissue one time step 3 ms 
(17) ,  the entire "fibrillation" episode has 
lasted about 30 s. 

Our cellular automaton model is based 
firmly on the properties of excitation and 
recovery that are essential to excitable me- 
dia. It incorporates, in quantitative detail, 
the effects of curvature and dispersion on 
wave propagation, in particular, on the 
speed and period of rotating spiral waves. 
By increasing the radius of the neighbor- 
hood one can control the spatial resolution 
of the automaton in much the same way that 
step sizes can be adjusted in the numerical 
solution of PDE models. Nonetheless, the 
cellular automaton is still orders of magni- 
tude faster than comparable numerical solu- 
tion of PDEs (23). We intend to exploit the 
fidelity and speed of our model in simula- 
tions of scroll wave evolution in three-di- 
mensional excitable media. 
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