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Simulation of Paleocortex Performs Hierarchical 

" 
cortex, consisting of distinct architectures 
and physiologies, are extensively connected 
by both feedfonvard and feedback projec- 
tions (7). The entire system works in syn- 
chrony with a 4- to  7-Hz (theta) sampling 

clustering pattern that is characteristic of small ma; 
mals (5). Bulb mitral cells (those neurons 
innervated by the peripheral receptors and 

JOSB AMBROS-INGERSON, RICHARD GRANGER,* GARY LYNCH that project to  cortex) receive inputs pre- 
sented repetitively for brief periods. Inputs 

Simulations were performed of layers I and I1 of olfactory paleocortex, as connected to to the cortical nenvork arise from the result- 
its primary input structure, olfactory bulb. Induction of synaptic long-term potentia- ant synchronous bursting in a subset of 
tion by means of repetitive sampling o f  inputs caused the simulation to organize mitral cells, yielding cyclic activity in rela- 
encodines of learned cues into a hierarchical memorv that uncovered statistical tively discrete "operation cycles" time- " 
relationships in the cue environment, corresponding to th; performance of hierarchical locked to the sampiing rhythm. Sparse ran- 
clustering by the biological network. Simplification led to characterization of those dom connectivity in the simulation selective- - .  
parts of the network responsible for themechanism, resulting in a novel, efficient 1y activates those cortical cells whose den- 
algorithm for hierarchicafcl~sterin~. The hypothesis is put forward that these cortico- drites are most connected to the input lines 
bulbar networks and circuitry of similar design in other brain regions contain that are active. Learning increments active 
computational elements sufficient to construct perceptual hierarchies for use in synapses on  sufficiently depolarized cells via - - 

recognizing environmental cues. a rule based on  LTP (3); which has been 
shown to produce a measurable increment 

H ow VARIOUS PROPERTIES OF ing retrieval, sequentially traverses this hier- in synaptic strength during even a single 50- 
memory might emerge from de- archical recognition memory. Moreover, ms burst of activity (4), that is, within a 
sign features of circuits in cerebral simplification of the nenvork results in an single operation cycle in the model. Learn- 

cortex is a major problem area for neural algorithm that provides a novel and efficient ing requires only a few training trials per 
network research ( 1 ,  2). In previous studies, 
n7e addressed this in modeis of the superfi- 
cial layers of the olfactory cortex (3) by 
incorporating several of the characteristics 
of the synaptic long-term potentiation 
(LTP) effect (4). Implementation of a repet- 
itive sampling feature meant to  represent the 
cyclic sniffing behavior of mammals (5) pro- 
duced a system that exhibited a kind of dual 
encoding of learned cues: early cycles (sniffs) 
generated response patterns that were com- 
mon to a subset of cues that resembled each 
other, whereas later responses were specific 
to an individual member of the subset. This 
could mean that the cortical model simply 
constructs nvo types of  representations (cat- 
egory and individual) or that it discovers 
hierarchical structure in the cue ~7or ld  and 
stores memory in this highly structured 
form. Human subjects in perceptual studies 
robustly recognize objects first at categorical 
levels and subsequently at successively sub- 
ordinate levels (6), suggesting the presence 
of structured memories that are organized 
and searched hierarchicallv durinn reconni- 

U i' 

tion. Here n7e show that the olfactory cor- 
tex-olfactory bulb model, during learning, 
generates a multilevel hierarchical memory 
that uncovers statistical relationships inher- 
ent in collections of learned cues, and, dur- 

Center for the Neurobiolop of Learning and Memory, 
University of California, I n k ,  CA 92717. 
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cdls each by the radiafaxdnal arborizations of local (feedback) inhibitory interneurons. i'he  nodel led 
neurons sum the voltages from their active synaptic inputs and require different amounts of 
depolarization for discharges, bursts of discharges, and for induction of synaptic change via LTP. A 
more detailed simulation of individual patches has shown that active cells that trigger inhibitory 
interneurons can suppress firing by other cells in a patch; because of this, tvpically only one or  two cells 
in a patch will discharge in response to bulbar inputs, making each patch into a competitive (or 
modified winners-take-all) arrangement of the type discussed by many authors (9, 10). Such an 
arrangement is assumed in the present simulation. Each cortical cell receives input fro111 the L O T  and 
fro111 a feedforward associational system generated by the cortical neurons themselves, in both cortex (7, 
23) and the simulation. The operating rules for the   nod el are based on  physiological data reported in 
the literature (5, 24). 

Fig. 1. Anatomical architec- Receptor 
ture of the bulbar-cortical Bulb axons 
simulation. The bulb simu- \ I 

I lation contains 400 projec- 
tion (mitral) units (simulat- 

I v Mitral cells 

ed neurons), divided into 4 0  Granule cells 
separate groups, each of Feedback 

which receives an input , A I 
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from one group of peripher- 
a1 receptor axons (22). The 
intensity of an input is re- 
flected in the number o f  cells 
within the appropriate 
group (or groups in the case 

'\ 

of rnulticomponent cues) 
that it activates. The (excit- 
atory) mitral projection cells 

I I - 

'' \< Lateral 
->-- olfactory 

tract - 
n Layer I1 cells 

A lnterneurons 

in bulb have been shown to -. I I 

have extremely long oblique dendrites that for111 dendrodendritic contacts with a dense granule cell 
inhibitory network (22). We adopt an assumptio~l made by others (12) that this excitatory-inhibitory 
arrangement serves t o  normalize the output of the bulb (that is, the total nu~nber  of mitral cells that are 
activated is reasonably constant across cues with different intensities and compositions). The inhibitory 
neurons (granule and probably periglomerular) are represented in the model by a single layer of cells 
and are innervated by rando~nly organized excitatory feedback frorn cortex. The strength of  the 
simulated feedback contacts is set during a "development" period in which hundreds of cues are 
presented and the strength of feedback synapses allowed t o  vary according to a correlational (Hebb) 
rule. The ~nitral cells of bulb project sparsely and nontropograp1~ically to the outermost layer of 
olfactory cortex via the LOT, both biologically (7) and in the simulation. The cortex is simulated as a 
laver of 1000 excitatonl laver I1 cells that are assumed in the   nod el t o  be arranged into patches of 20  



cue, as in rapid olfactory learning in mam- 
mals (8) .  Input lines shared across many 
similar input cues, and thus participating in 
many learning episodes, miill strengthen 
their target synapses more than lines that 
participate in relatively fewer episodes. The 
result is that cortical dendrites (which can be 
viewed as vectors being moved by synaptic 
learning) become increasingly well tuned to 
those inputs containing the shared subset; 
that is, those inputs that are sufficiently 
similar to  constitute members of a cluster. 
We have shown that this circuit will gener- 
ate cell-firing responses that group learned 
cues by similarity. For a given threshold of 
input similarity among a set of cues, outputs 
are identical for all of the cues, whereas 
belorn7 that similarity threshold, outputs are 
much less similar than corresponding inputs 
(3). This form of unsupervised learning (9, 
10) is to  be distinguished from supervised 
learning, in which categorization informa- 
tion is provided to the learner. 

Feedback from cortex to  the bulb inhibi- 
tory layer in the model (Fig. 1 )  is trained by 
means of a correlational rule during an 
earlier "developmental" period via a Hebb 
rule coarsely correlating activity in cortex 
with activity in bulb. The feedback then 
selectively inhibits the mitral cells in those 
bulb patches (Fig. 1) that are most responsi- 
ble for the cortical output response, via 
relatively long-lasting inhibition that has 
been shown t o  exist in olfactory bulb (1 1). 
Resulting renormalization of bulb activity 
(12) maintains the total number of firing 
mitral cells at a roughly constant level. This 
renormalization thus recruits additional mi- 
tral cells in remaining (uninhibited) bulb 
patches to fire to  compensate for those 
selectively inhibited by the feedback. Thus, 
the pattern of mitral cell firing on the next 
operation cycle (roughly 200 ms later) is 
distinct spatially from the previous pattern. 
This in turn activates a distinct set of cortical 
cells. This sampling cycle (bulb activation + 
cortical activation + inhibitory feedback + 

renormalization) can be repeated until bulb 
is sufficiently inhibited to  be largely quies- 
cent. The sequence of cortical responses 
after the initial (first-sample) response be- 
comes progressively more different for dif- 
ferent cues (3), increasingly approximating a 
given cue, thus producing unique encodings 
for individuals. 

Until now it had not been determined 
whether the nenvork had the ability to  
discover secondary or  intermediate structure 
in hierarchically organized input cues. Table 
1 gives responses of  the simulation after 
training to such a structured environment, 
one consisting of  clusters, subclusters within 
those clusters, and individuals within the 
subclusters. O n  its first cycle, network re- 
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sponses to  members of a given cluster of 
input cues are nearly identical, thus group- 
ing those cues together, whereas between- 
group overlap is extremely low. Second- 
cycle responses are nearly identical for mem- 
bers of subclusters, but not for members of 
the containing clusters. Third-cycle network 
responses are nearly unique for each individ- 
ual cue. The nenvork thus discovers inter- 
mediate structure, exhibiting an ability cor- 
responding to hierarchical clustering (13), 
which identifies multilevel statistical struc- 
ture in novel data. 

Empirical results of this type do not by 
themselves elucidate the mechanism by 
which the hierarchical clustering operation 
is accomplished. O f  primary interest is the 
identification and characterization of the 
essential design features of the nenvork un- 
derlying its hierarchical clustering ability. 
Analysis led to  such a characterization, and 
controlled testing revealed that the resulting 
simplified formulation of the network pro- 
vides a novel and efficient method of hierar- 
chical clustering. 

The simplified formulation of the cortex 
contains a weight matrix W [corresponding 
to the connections benveen the lateral olfac- 

tory tract (LOT) and piriform layer I1 cell 
dendrites] (Fig. l ) ,  divided into H nonover- 
lapping "wi~u~ers-take-all" o r  "competitive" 
(9, 10) subnets of cells, each competing to 
"n7inn within their subnet. Each (densely 
connected) subnet S,E {S1, SZ, . . . , SH} 
contains weight vectors C (that is, columns 
of W) such that W = UiSi (14). Each subnet 
S,, corresponds to  the network response at 
hierarchical level h. The simplified bulb re- 
ceives IV-dimensional real-valued vectors 
(corresponding to frequency and spatial pat- 
terns of activation input to  bulb) and passes 
these to cortex, relaxing the requirement in 
the biological model that inputs to  cortex 
must be binary. The cortical nenvork is thus 
trained on a set of N-dimensional real- 
valued vectors via an extension of a correla- 
tional (Hebbian) learning algorithm (a sim- 
plification of the LTP rules for synaptic 
modification). An input vector X is present- 
ed first to  the highest subnet in the hierar- 
chy, S, .  The column vectors (dendrites) C 
in this subnet that n7in the (winners-take-all) 
competition on  X (corresponding to target 
cellsthat are most depolarized by this input) 
are identified. The synaptic contacts on  
these winning vectors are then trained, mov- 

Table 1. Overlaps among responding vectors in cortical-bulbar simulation to eight hierarchically 
organized input cue vectors. The input cues can be visualized as the hierarchical cluster dendrogram at 
the left side of the table (see the legend to Fig. 2b), breaking the input space into two superordinate 
clusters, which are divided into four intermediate subclusters (two subclusters in each cluster), which in 
turn are subdivided into eight individual cues (a to h), two individuals to a subcluster. Average 
Euclidean distance between the two cues in a subcluster is 1.9; between the rneans of the subclusters 
with a cluster is 2.6; and between the means of  the two clusters is 3.2. Response overlaps are defined as 
follows: let 5 = {c1,C2, . . . , Ck} be the set of clusters at one level (superordinate, intermediate, o r  
subordinate), where each cluster consists of a set of cues. For X c c, let RI,(X) be the set of cortical cells 
responding to X at operation cycle 11. The average percent within-cluster overlap at level 5 for cycle h is: 

where A is the number of  patches (assuming one winner per patch) and 151 is the cardinality of  set 5. 
Analogously, average percent between-cluster overlap is 

First-cycle responses were nearly identical (average overlap among responses was 91%) for all objects 
within either of the two (superordinate) clusters, indicating simply ~nernbership of a cue in a cluster, 
whereas between-cluster overlap between the superordinate clusters (right-hand column) was extremely 
low (8% or  less) for all trials. Second-cycle responses were very si~nilar (average within-group overlap 
88%) for subcluster members, but were distinct for other members of the containing cluster that were 
not members of the subcluster (average within-group overlap 3 1%). Third-cycle responses were distinct 
for each individual cue: little or no  overlap exists among responses to individual members of clusters 
(0%) or subclusters (17%). 

*WI,,,, With~n-group overlap among all responses; %I,,,, benveen-group overlap benveen superordinates. 
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ing the vectors closer to X by an increment 
y,. Feedback from the just trained vectors 
then partially inhibits or "masks" the input. 
The remainder of the input is presented to 
the next lower subnet of cells in the hierar- 
chy, until all hierarchical subnets S,, S2, . . . , 
SH have been trained, over H operation 
cycles. At any given hierarchical level Sh, the 
Cs in that subnet can be shown to converge 
to the means of the clusters of cues on which 
they are trained, as in related "competitive 
learning" algorithms (3, 9, 10). The feed- 
back inhibition step enables vectors in W 
assigned to the subordinate hierarchical lev- 
els to converge to means of subclusters of 
the data, allowing secondary (and H-ary) 
structure to be identified (for H divisions of 
the weight matrix into subnets). Formallv 

Step 1. Do steps 2 to 5 for each input X 
to be learned. 

Step 2. Do steps 3 to 5 for each hierar- 
chical level he{l, 2, . . . , H}. 

Step 3. Identifi winning cells (column 
vectors) in subnet Sh for input X: win(X, 
Sh) 

Step 4. Train each of the winning cells 
CE win (XISh) identified in step 3: C + C 
+ Y<(X - C). 

Step 5. Subtract winners from input: X 
+ X - mean[ulin(X,Sh)]. 

where H is the depth of the hierarchy; 
win(X,Sh) = {CeSh:[X . C = maxCpSh(X 

Ci)] A X . C > 0) is the set of weight 
vectors within a subnet Sh that wins the 
competition on the input X; and y,, is the 
learning rate (15). 

To enable controlled testing of the ability 
of the simplified formulation to identifj 
hierarchical structure, we created cue envi- 
ronments with known hierarchical structure. 
The cues each consist of the sum of a 
sequence of orthogonal multidimensional 
vectors with noise, forming a hierarchv of 
subclusters within clusters: 

 cue=^+ 2 ( B ~ + K , )  (1) 
ir path to cue 

where each Bi is an orthogonal vector in the 
summation path to the cue (Fig. 2);  M is 
noise and 

that is, each Ki is unidimensional Gaussian 
noise in the direction of component i. The 
result is a set of vector sums that correspond 
to groups of vectors that are naturallv clus- 
tergd at'each of the i levels of the hieiarchy 
(Fig. 2, a and b ) (16). 

The dendrograrns produced by the simpli- 
fied formulation (17) are shown in Fig. 3a. 
Single-level competitive learning partitions 

the input space in a piecewise linear fashion units, so the complete hierarchv will contain 
(9); for the presen; algorithm, the input roughlv b(b - 1)-'n units, organized into a 
space at level h is itself a partition generated 
at level !I - 1 and is recursivelv subparti- 
tioned in the same piecewise linear manner. 
Like most probabilistic algorithms, the one 
presented here can fail to identifj the full 
hierarchical structure in some circumstances 
(for example, degenerate initial conditions, 
initial skew bias in the data); empiricallv 
hourever, failure tends to be graceful in that 
correct structure is identified, although in- 
termediate structure mav be either missed or 
interposed. The breadth of the categories 
created is dependent on the number and 
distribution of units in a subnet. 

The simplified formulation of the net- 
work, besides representing selected charac- 
teristics of the interacting biological systems 
(olfactory bulb and cortex) in the larger 
simulation, can be treated as a proposed 
novel algorithm for hierarchical clustering. 
As such, its performance on structured data 
can be compared directlv against standard 
algorithms in the hierarchical clustering lit- 
erature (Fig. 3b). Moreover, the space and 
time complexity of the algorithm can be 
evaluated. The weight matrix W contains H 
layers or distinct sets (subnets) of units. For 
complete separability of ti cues, the bottom 
of the hierarchy (SH) must contain at least n 

tree consisting of loghn hierarchical layers, 
where b is the average branching factor at 
each level. Thus the number of units re- 
quired grows linearly with the number of 
cues to be learned: the space complexity of 
the algorithm is O(n,"v'), where N is the 
dimensionality of X [a function g(n) is "or- 
der" -i(n)-denoted OV(tl))-if for large n, 
g(n) 5 kf(n) for some constant k]. 

The three time costs of the algorithm for 
each input vector X at level h are (i) surnma- 
tion of inputs on subnets Sh; (ii) computa- 
tion of subnet winners C ;  and (iii) weight 
modifications on C .  On a serial processor, 
after processing all levels (i) is O(nN), (ii) is 
O(tl), and (iii) is O ( N  log tl). Because of the 
inherent parallelism of the algorithm, on a 
suitable parallel processor, (i) is O(log h?, 
(ii) is O(log n), and (iii) is constant. Thus 
training time per presentation, assuming 
O(n) units in the net, is O(n,V) in serial and 
O(log tl . log in parallel. We have not 
determined analytically the number of in- 
stance presentations per cue required for 
convergence, though empirically a small 
number (-10) has sufficed (see legend to 
Fig. 3). Hence, we conjecture that training 
time to process a collection of ti objects to 
convergence is 0(n21\? in serial and O(tl 

Fig. 2. (a) A sample mem- a 
bcr of one group ot a crcat 
cd hierarchv of cues The 
50-dimensional cctor, an 
example ot one group (class 
7) of 12 [see (b)], is the sum 0 
ot three orthogonal ~ c c t o r s  
plus a noise Lector Posi- 
tions on the x axcs corrc 
spond to cach o t  the 50 dl- I Noise 

mcnsions of the ~cc tors ,  the 
y axcs denote the ~ a l u e s  ot 
cach of the drmcnsions Thls o /,/v\~[\ 
particular L ector sum corre- 
sponds to the end point of j Class 7 
the path indicated bv dark- 
ened lines in the hierarchical 
tree in (b) (b) A hierarch\' 
of 50-dimensional real L al 
ued ~cc tors  like the instance 
in (a), created such that the\ 
are naturallv clustered at 
cach of thrcc Ic~cls, \la an 
algorithm described in the 
text Each ~ c c t o r  is the sum 
of three orthogonal compo 3 0 
ncnt Lectors plus a noise b 
lector All Lectors undcr 
nodc Bo contain the same 
initial componcnt (B,), all B 

2 0 

under nodc B, contain in1 
tial component B,, of the B, 
~ e c t o r s  under node Bo, 1 0  
those undcr nodc B, all con 
tain initial component Bo 
and second componcnt B,, 0 0 
and so on  The height of 6 10 11 12 
cach nodc corresponds to 
the average distance among the means of the data below the node. 
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log ti . log nLl;) in parallel. The inherent 
parallelism and uniformity of the steps per- 
mits efficient hardware implementation 
(18). 

The simplified network formulation 
aforementioned consists of specific opera- 
tions of winning a competitive subnet, train- 
ing winning vectors, and masking the input 
by the trained vectors. Admitting a range of 
different mechanisms for competition, train- 
ing, and masking yields formulation of a 
general algorithm of which the simplified 
network is a special case 

Step 1. Do steps 2 to 5 for each input X 
to be learned. 

Step 2. Do steps 3 to 5 for each hierar- 
chical level hell ,  2, . . . , H}. 

Step 3. Identifj winning cells (column 
vectors) in subnet Sh for input X. 

Step 4. Train each winning cell identified 
in step 3. 

Step 5. Mask structure identified by win- 
ners in step 3 from input X to produce 
remainder of input X for further processing. 

rithm characterizes a class of repetitive sam- 
pling algorithms that successively approxi- 
mate statistical aspects of data, including 
eigenvectors and clusters. 

Our results provide an instance in which a 
novel and efficient algorithm for a well- 
studied computational problem is developed 
from a simulation of a specific cortical net- 
work. Reflecting the svstem from which it is 
derived, the algorithm is inherently parallel 
and hence lends itself to efficient implemen- 
tation in hardware. The present findings 
also point to the hypothesis that approxi- 
mate hierarchical clustering will emerge as a 
fundamental property of memories based (at 
least in part) on LTP-like synaptic modifica- 
tions in damped oscillatory networks of the 
type found in the bulbar-cortical svstem. 
The model is sufficiently detailed to make 
testable predictions at both behavioral and 
phvsiological levels (for example, different 
cortical cells should discharge over succes- 
sive sampling cycles with progressively more 
selective tuning), but relevant experimental 
data is not vet available. Finallv, the general - 

The generalization bears some relation to architectural plan of the bulbar-cortical sys- 
algorithms identifiing principal compo- tem finds parallels in certain aspects of tha- 
nents of data (19, 20); indeed, the algo- lamo-cortical relations [that is, secondary 
rithms set forth bv Oja et al. and Sanger (19) thalmic projection nuclei -, superficial neo- 
can be cast as distinct special cases of the cortex -+ deep layers of cortex -, nucleus 
generalized formulation of the algorithm. reticularis + projection nuclei (21)l. This 
We conjecture that the new general algo- similari~ suggests a possible connection 

Fig. 3. (a) Dendrogram 
structure creatcd by simpli- 
ficd network after tra~ning. 
The nctwork was trained on  
three passes ovcr a training 
set consisting of a samplc of 
120 cucs in random order 
(each of 12 categories rcprc- 
sentcd by approximately tcn 
instances). After training, 
thc network was tcstcd on a 
dist~nct testing set consist- 
ing of ten novel instances of 
e&h of the 1 2  categories, 
and a record was kept of 
which cells won on  each cue 
presentation. Analysis of 
this record showed that cells 
become tuned to groups of  
cues that correspond to cate- 
gories; cell responses are in- 
dicated in the dendrogram. 
For instance, cell C, wins on  
the first sniff for all instances 
of cues from categories 1 
through 7 and not on  any 
other (that is, C6 wins if and 
only if the cue is from cate- 
gory 1 through 7); cell C,, 
wi~isonthesecondsnifffor 1 2 3 4 5 6 7 8 9 10 11 12 
cues from categories 6 and 7 and no other; cell C3, wins on  the third sniff if and only if the cue comes 
from category 7.  The height of each node is given by the average Euclidean distance among the weight 
vectors represented by each cell at that level (for example, the average distance benveen weight vectors 
C39, C4,, and C49 is 1.11). (b) Dendrogram created by agglornerati\~e hierarchical clustering algorithm 
using Euclidean groupmean distance metric (13) on  the same testing set data as in (a). Height of each 
node denotes distance between the two immediately subordinate constituents of the node. 

with attentioilal functions proposed for tha- 
lamocortical interactions ( 4 ,  and raises the 
possibility that this biologically generated 
mechanism for hierarchical clustering may 
be a routine part of perceptual recognition 
memory behavior in animals and humans 
( 6 ) .  
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