
Fractional Statistics: Quantum Possibilities in 
Two Dimensions 

A standard notion of quantum mechanics is that all 
particles, elementary or composite, must fall into one of 
two fundamental categories: fennions or bosons. Howev- 
er, it has recently been discovered that there can be 
quantum particles which are neither fermions nor bosons. 
Such particles (anyons) can only occur in two spatial 
dimensions-yet this does not rule out their existence, for 
they are found as elementary excitations in confined, 
quasi-two-dimensional condensed-matter systems and 
may occur in other systems as well. An overview of the 
argument for the existence of anyons is presented, along 
with a discussion of their role in condensed-matter phys- 
ics. 

T HERE IS A WELL-ESTABLISHED SET OF IDEAS IN QUANTUM 

physics which is embodied in the word "statistics." In 
quantum statistical mechanics, the rules for counting states 

are drastically modified from the classical rules, in one of two 
possible ways, depending on the nature of the quantum-mechanical 
interference arising among identical particles. If the quantum parti- 
cles are identical bosons, then the amplitudes for configurations 
which differ only by a permutation of two particles interfere 
constructively-that is, with a relative phase which is + l .  In 
contrast, the interference is destructive-the relative phase is - 1- 
for identical fermions. The effect of this difference is not small: any 
number of bosons may occupy a single quantum state, while the 
occupation numbers for fermions are restricted to the values 0 or 1 
(the Pauli exclusion principle). At low temperatures, these simple 
counting rules can dominate the physics. A gas of fermions (for 
example, electrons in a metal) will occupy states of very high kinetic 
energy-up to the Fermi energy--even at zero temperature, simply 
because of the Pauli principle. A Bose gas (such as liquid helium) 
can, by contrast, "condense" at low temperatures into a state in 
which a large fraction (up to 100%) of the particles are in the same 
quantum state and are phase-coherent: a superfluid. All the low- 
temperature properties of a system of many identical particles are 
thus controlled by the simple difference between + 1 and - 1. 
Because of the tight relationship between counting rules for the 
occupation of states (in statistical mechanics) and the relative 
exchange phase associated with exchanging two particles (in quan- 
tum mechanics), the word "statistics" has come to refer to both. 

The "amplitude for a configuration" (for example, N particles at 
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{rl, r2, . . ., rN}) is of course the wavefunction +(rl, r2, . . ., rN). Let 
us call the amplitude which differs only by a single permutation 
+' = +(r2, r l ,  . . ., rN). The identity of the particles means that the 
probability density is unaltered by the exchange: 

where p is a simple phase exp ie .  A second exchange gives 
+" p 2 $ ( r 1 ,  1-2, . . ., rN). Requiring the wavefunction $ to be single- 
valued, we then obtain $" = +, or p2 = 1. That is, the permutation 
operator has only two possible eigenvalues 

Thus, using extremely simple arguments, we find that only two 
kinds of wavefunctions are possible for identical particles, and 
nature has (apparently) obliged by presenting us with the corre- 
sponding kinds of particles: bosons ( p  = + 1) and fermions ( p  = 

-1). It is naturally tempting to believe that this coincidence- 
two kinds of permutation symmetry for wavefunctions, and two 
kinds of particles found in nature-is explanatory, that is, that the 
former fact explains the latter. The chief hurpose of this article is to 
demonstrate that this property of wavefunctions does not in itself 
determine the possible phases which may arise upon physical 
exchange of identical particles; that a more careful look at the 
question will again give us only bosons and fermions in three 
dimensions, but a continuum of possibilities ("fractional statistics") 
in two dimensions; and, finally, that such other possibilities are 
worth serious consideration. as- thev can arise in some condensed- 
matter systems which are effectively two dimensional. These ideas 
were not originated by us, being roughly 10 years old (1) [and the 
groundwork was laid still earlier, in 1971 (41. We are simply a small 
part of a rapidly growing group of physicists who are currently 
trying to understand the physics of this new kind of two-dimension- 
al particle. 

Paths, Topology, and Statistics 
We are used to thinking that the permutation eigenvalue p 

controls the main physical properties of a system. It turns out 
however, that the quantity which is crucial to the physics is notp but 
rather the phase which arises from the adiabatic transport of two 
particles [or, equivalently, in the sense of Berry (3) ,  of the state $1 
along a path which gives an actual physical exchange. This latter 
phase (let us call it 7) depends upon both the wavefunction and the 
Hamiltonian, as we shall show below. Since q does not necessarily 

ARTICLES I197 



Fig. 1. An idealized sketch 
of an Aharonov-Bohm ex- 1 
perinlent. Particles are 
emitted at the left and de- 
tected at the right. There is 
a magnetic flux @ in the 
impenetrable solenoid at 
the center. Paths which 
differ in relative winding 
number about the sole- 
noid suffer a phase shift 
which depends on the en- 

paths are shown. 
closed flux; three such 

equal p (although, for bosons and fermions, the two can easily be the 
same), one must choose which one is meant by the term "statistics." 
We shall choose it to mean q. Before justifying this claim (q # p) 
explicitly, let us first examine the possible constraints on q by 
considering the kinds of paths (1, 2, 4) which may arise in a space 
with identical particles-in other words, we seek the analog of Eq. 3 
for q.  

The quantum amplitude associated with a path is called a 
propagator (5 ) .  Let K(R, R') be the amplitude for propagation from 
R to R', where R stands for a whole configuration {rl, 1-2, . . ., rN). 
Then K can be written as a "path integral'-that is, as the sum of 
partial amplitudes k,(R, R'), one for each possible path w from R to 
R': 

K(R, R') = C x(w)k,(R, R') (4) 
o 

The path amplitude k for a given path w is determined by the 
Hamiltonian H, or, equivalently, the action S, according to k, = 

esp iS[o]. The weights x are then needed to account for any 
boundary conditions (such as minus signs due to Ferrni statistics) 
which are not taken care of in H. We deduce several things (2, 6)  
about the weights ~ ( o ) :  

1) Paths which can be continuously deformed into one another 
(that is, without cutting-although stretching or shrinking is al- 
lowed) must have the same weight X. Clearly the differences in k for 
two such paths must arise from the action S and not the boundary 
conditions. This constraint allows us to group the paths in space 
into classes a ,  and to rewrite Eq. 4 as 

K(R, R') = 1 ~ ( a )  2 k,(R, R') 
oEa 

(5) 

(We note that if there is more than one class in the space-that is, if 
there are paths with common end points which cannot be deformed 
into one another-then the space is "multiply connected." Our 
whole discussion is only interesting if this is the case. For concrete- 
ness, one might imagine particles confined to a ring or punctured 
disc. The different classes are then the paths with different winding 
numbers about the excluded region.) 

2) We can choose R, R', and S in Eq. 5 so as to make the 
contributions of all classes of paths but one (say, &) in the right- 
hand side arbitrarily small. Then, taking the absolute value of both 
sides tells us that x(&) is unimodular, that is, a simple phase. This 
clearly holds for any class &. 

3) Finally, we restrict ourselves to closed paths (R = R'). This 
allows us to imagine any path in a given class y as a composition of 
paths in different classes (say, a and P). (For example, any path with 
winding number n = 3 around a ring may be seen as the composi- 
tion of an n = 2 path and a path with n = 1.) Since we can do this 
for any path in y (by continuous deformation) without changing the 
classes of the "composing" paths, the relation holds for the classes 
themselves. Schematically, we express this composition of classes as 

y = ap. The corresponding result for the weights in the path 
integral is clearly 

[For closed paths, the classes are called homotopy classes, and their 
group structure under composition on a manifold is the fundamen- 
tal homotopy group (nl) of the manifold (7). Equation 6 then says 
that the weights x form a scalar representation of the group n l . ]  

As a counterpoint to these mathematical abstractions we mention 
the simple, idealized Aharonov-Bohrn effect (8, 9), in which charged 
particles move in a field-free region surrounding an impenetrable 
core containing magnetic flux (Fig. 1). Because the particles can 
never reach the field region, the magnetic flux has no classical effect 
(such as a Lorentz force) whatsoever. However, there is a purely 
quantum phase which appears from the vector potential A and 
which can cause a shift of the two-slit diffraction fringes in the 
experiment. The vector potential induces a topological phase 
exp(inA) where 

n is the winding number of the path r around the flux @, and 
Qo hcle is the flux quantum. We then have two choices for 
assigning the weights x to paths with different winding number n. 
We can include an appropriate vector potential in H and let all the 
x , be 1. The alternative is to use a free-particle Hamiltonian, in 
which case the flux appears in the weights X ,  as a boundary 
condition: X ,  = exp inA. We see that this latter choice obeys the 
composition rule (4) (the former does so trivially): x ,xm = 

exp i(n + m)A = y,j,=,+,) Either choice yields the correct physics 
(8, 10). 

Now we address the question of statistics, that is, the exchange of 
identical particles. We want a formalism that does not artificially 
place labels on indistinguishable particles. Hence, we define a 
configuration space cd as a set of points in Nd dimensions, 
representing the positions of N particles in d spatial dimensions- 
but, in cd those points which are the same to within a permutation 
of the particles are identified as one point. Exchange paths in this 
space are thus closed paths. If we further exclude from this space all 
points of double occupancy (accomplished physically by a hard-core 
repulsion), then it turns out cd is in fact multiply connected. We 
want to examine the set of closed paths for this space. If we can 
determine the composition laws of these paths, then Eq. 6 will give 
us the constraints on the exchange phase, which is called q above. 
For simplicity we will treat only two particles, and restrict our 
attention to their relative coordinate r-recalling that, in cd, 
r = -r. 

We first take d = 3. Without resorting to homotopy theory, we can 
classify the closed paths in c3 using simple pictures, as in Fig. 2. 
Given the hard-core constraint ( r  =$is forbidden), we can hold Irl 
fixed without loss of generality. We thus imagine two particles, 
moving in three dimensions relative to one another at a fixed 
separation (so that the locus of r is the surface of a sphere). The 
resulting manifold (P2-a subspace or "shell" extracted from c3 for 
purposes of visualization) is a spherical surface, with opposite points 
identified. Let us now use P2 to characterize the kinds of closed 
paths-which constrain q-in the configuration space c3. Figure 2a 
shows a path on P2 in the trivial class (no exchange), to which we 
assign the weight xo = 1. All paths in this class may be continuously 
shrunk to a point. In Fig. 2b we see a closed path (remember, 
r = -r) which cannot be deformed to a point and thus represents a 
class distinct from the trivial class. This path represents a single 
exchange of the two particles and its class receives the weight q. 
Finally, in Fig. 2c we show a path which represents two exchanges 
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Fig. 2. Paths showing relative mo- 
tion of two identical panicles, by 
tracking their relative coordinate r. 
(A) A path which does not involve 
an exchange. This path can be con- 
tinuously deformed to a point. (B) 
A path involving a single exchange 
(r -, -r). This path is a closed loop 
since r = -r; however, it cannot be 
deformed to a point without cut- 
ting. (C) A path involving two 
consecutive exchanges. The at- 
tached lines show how to deform 
this closed path to a point, by drag- 
ging it around the sphere. B c 

(weight r12)  It  is clear from the figure that this path may be 
continuously deformed (that is, without cutting) into the trivial 
path (Fig. 2a). It thus falls in the same homotopy class and takes the 
same weight in the propagator: ~ [ ( r ) ]  = q 2  = xo = 1. We find: 

In three dimensions, two exchanges are topologically equiva- 
lent to zero exchanges. Thus the phase assigned to two ex- 
changes must be that assigned to the case of no exchange. 

In other words, by a considerably more involved argument, for 
the three-dimensional case we obtain the same result as Eq. 3: 
T2 = 1 and hence there are only bosons and fermions. 

The reward for our investment of effort in this rather formal 
language comes when we consider the two-dimensional case. The 
appropriate manifold for this case is a circle with oppqsite points 
identified: PI,  rather than P2 (Fig. 3). Again it is clear that a single 
exchange cannot be deformed to the trivial path. It is also clear, 
however, that neither can the two-exchange path (once around P I )  
be so deformed, nor in fact can the path representing n exchanges, 
for any n. This means that the number of classes is infinite, rather 
than two. This also means that there is no constraint on the value of 
qn, and thus on 7, for two-dimensional particles: 

In two dimensions, two exchanges are not topologically 
equivalent to zero exchanges, nor are n exchanges, for n # 0. 
Thus it is possible to consistently assign any value to the phase 
due to exchange. 

The technical name for the group structure of the paths in C2 [the 
first homotopy group, H~(C*)]  is the braid group (4, 11). We 
mention the name because it is apt, and picturesque. If we imagine 
world lines for particles moving in 2 (space) + 1 (time) dimensions 
(Fig. 4), we see that, given the hard-core constraint, the world lines 
cannot cross. Thus one can, in principle, distinguish crossing "in 
front" from crossing "behind'-that is, clockwise from counter- 
clockwise. Put more simply, in two dimensions it is possible for the 
statistics of particles to possess a detectable (right- or left-) "handed- 
ness." Furthermore, a third world line can be braided into the two 
shown in a nontrivial way-that is, in a braid that cannot be undone 
(Fig. 4b). We can also see this algebraically: if an exchange path of 
two particles happens to enclose a third, the appropriate phase is 
q a 7*. The latter factor results from a net encirclement of the third 
particle (which is equivalent to two exchanges) and is nontrivial 
when T2 f 1. This fact makes the many-particle problem, for 
arbitrary statistics in two dimensions, considerably less trivial than 
the many-boson or many-fermion problem: the phase 7 due to 
exchange of two identical particles in two dimensions depends in 
principle on the positions of all the other particles. 

From the above arguments we see why consideration of simple 
permutation symmetries of wavehctions does not suffice in two 
dimensions. A given permutation has no information on the path by 
which the permutation is accomplished. We have shown that the 
topology of space for identical particles in three dimensions allows 
for only two classes of exchange paths and thus only two values of 

the exchange phase 7 .  These values, being k 1, can be treated by a 
formalism which only tracks the net permutations of the particles. 
The two-dimensional case, however, allows a continuum of values 
for q,  because there are an intinite number of classes of exchange 
paths. For this case, one clearly needs more information than is 
contained in the simple two-valued permutation. We suggest, then, 
that it is a fortunate historical accident that, on the one hand, there 
are only two kinds of wavefunctions which are eigenstates of 
permutation, while, on the other hand, our world is apparently (at 
least) three dimensional, so that we have only been presented with 
particles (bosons and fermions) whose exchange properties are path- 
independent. 

There is another way of viewing the paths in Fig. 2 which is 
illuminating. The single-exchange path (b) can be smoothly de- 
formed into its time reverse by simple rotation about the "north 
pole" (Fig. 5). In quantum mechanics, time reversal T is equivalent 
to taking the complex conjugate of the amplitude. Since the path (b) 
and its time reverse are in the same homotopy class, we have that 
7* = 7, which again gives 7 = k 1. For the two-dimensional (2D) 
case, however, it is clear that there is no way to deform a path into its 
time reverse: these are paths with opposite winding numbers on PI.  
This again tells us that 7[2D] is not constrained to the values k1. 
We also see that two-dimensional particles which are neither 
fermions nor bosons do not obey time reversal symmetry. This is in 
fact an outstanding signature of particles with nonstandard statistics, 
which should be an aid both in thinking about their properties and 
in detecting their existence. 

At this point, we have summarized results which were (mostly) in 
print in 1977. The application of homotopy theory to the composi- 
tion rules for the weights x was accomplished by Laidlaw and 
DeWitt (2) in 1971, but they did not pursue the implications of 
their result for the two-dimensional case. The possibility of a 
continuum of values for the exchange phase in two dimensions was 
(to our knowledge) first treated in 1977 by Leinaas and Myrheim 
(1) who were apparently unaware of the work of Laidlaw and 
DeWitt. Finally, we note that, if the hard-core constraint is not 
imposed, then Cd is simply connected for any d: all paths are 
deformable to the trivial path, and only bosons are possible. 

Dyons and Anyons 
We can illustrate the ideas of the previous section with a simple 

physical picture, which will bring us up to 1982 and allow us to 
introduce both the name and a model for these proposed particles. 
Again we begin with the three-dimensional case and consider a 
particle with charge e, tightly bound (somehow) to a magnetic 
monopole (12) of magnetic charge g. The resulting composite is 
called a dyon (13). The charge g is quantized (in terms of e )  by a 
number of consistency conditions (13). 
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Fig. 3. The two-dimensional ver- degree of freedom: the relative angle 9. The two-body wavefunc- 
sioll of Fig. 2 .  Shown is a tion + must be symmetric under exchange, since the particles are 
path illvO1ving a sing1e exchange in bosons; but exchange simply adds 71. to 4: two dimensions. This path cannot 
be deformed to a ~oint-but nei- +(9) = +NCP + 71.1 
ther can a path involving two (or 

(8) 

more) exchanges. The Hamiltonian, eigenfunctions, and eigenvalues are 

We now consider adiabatic exchange of two identical dyons (each 
of which has a single magnetic charge g), keeping track of the phase 
arising from the relative motion of charge and flux. The result (13) is 
that, if the charged particles are bosons, the net phase upon 
exchange is -1, arising solely from the electromagnetic coupling. 
Similarly, if the charges are fermions, the dyons acquire a phase of 
+ l  upon exchange. This is our first example of a case in which a 
wavefunction can be of a given permutation symmetry p, while the 
exchange phase q can be completely altered fromp, as determined by 
the electromagnetic coupling in H. The quantization of g prevents 
any result more exotic than transmutation from Bose to Fermi, or 
the reverse, in three dimensions. This, however, should not be 
surprising in the light of the above topological argument. 

Now [following Wilczek (14) ]  we consider the two-dimensional 
analog of the dyon. The charge e is unchanged, but the analog of the 
monopole is an infinitely thin flux tube piercing the charge (the 
construction of such an object is graphically illustrated in Fig. 6). In 
two dimensions, one can consistently allow the flux to take on any 
value, just as in the Aharonov-Bohm effect. Thus, the adiabatic 
exchange of two identical two-dimensional charge-flux composites 
can in principle give any phase. Wilczek therefore named these 
objects anyons-and the name has since been generalized to any 
two-dimensional object with nonstandard statistics. 

The anyon picture allows us to present a simple model which 
again demonstrates the independence of rl fromp-and the fact that 
the physics is determined by the former. We consider two bosons 
(charge e) bound to the ends of a rigid rod which is itself confined to 
a plane. Neglecting the center-of-mass motion, the problem has one 

f time 

L 
space 

Fig. 4. The braiding of 
world lines which cannot 
pass through one another 
in 2 + 1 dimensions. (a) 

where L is the angular momentum and I is the moment of inertia. 
The symmetry requirement then restricts the boson spectrum to 
even values of m and the ground-state energy is zero. 

Now we bind flux tubes to the bosons. Note that the particles 
never contact the flux, responding only to the vector potential. (We 
assume throughout that particles do not see their own flux.) The 
Hamiltonian in the presence of the flux tubes is 

where 0 = 271.@/Q0 controls the phase under adiabatic exchange 
= exp(i0). The new energy eigenvalues are 

For a suitable choice of flux, we can have BIT = 1, making the 
energy spectrum of bosons, whose wavefunction is symmetric (m 
even), precisely equivalent to that of fermions (without attached 
flux). One can in fact show that for 0 = -rr, every observable in the 
system has the value identical to what it would have been if the 
particles had been fermions (without flux tubes). For instance, the 
angular "Fermi" velocity in the ground state, (h/I)(O/v), is nonzero 
(even though m = O!)-again giving (for 0 = k-rr) the value appro- 
priate to fermions. For nonintegral values of (BIT), the particles are 
effectively anyons: their statistics is "fractional." (Here we see that 
the term "fractional" statistics refers to the "statistics angle" 0 being 
a fractional multiple of T. )  This example, admittedly simple and 
artificial, nevertheless amply underscores our claim: p (permutation 
symmetry of +) does not necessarily equal q, the exchange phase- 
and the latter determines the physics. 

What About the Real World? 
An important component of our thesis remains to be addressed. 

How can we expect the possibility of fractional statistics to be 
realized in nature? Our world is three dimensional, and in it we find 
only bosons and fermions. We know that many condensed-matter 
systems can be rendered effectively two dimensional, but is it not the 
case that such systems will still be inhabited only by the fundamental 
three-dimensional particles, that is, by bosons and fermions? 

We can find a hint of the answer from the anyon picture. If it were 
possible to truly bind a charge e to a fraction of a flux quantum 
(keeping the resulting object confined to two dimensions), then 
fractional statistics would be physically realized. It turns out that 
nature has accomplished this task, with a slight twist: by binding a 
fractional charge to a single flux quantum-r, more accurately, to a 
271. vortex. 

Shows that exchanges Let us elaborate on this claim (15). In condensed-matter systems 
cannot be "undone," (b) 
shows that a third called semiconductor heterostructures, it is possible to create a two- 
bystander" is nontrividy dimensional electron fluid which, when subjected to large magnetic 
involved in general. fields and low temperatures, exhibits the quantum Hall effect, and 



Fig. 5. How to deform the three 
dime~lsional exchange path (Fig. 
2B) into its time reverse, without 
cutting, by simply rotating it about 
the "north pole" as show~l-keep- 
ing the "equatorial" points diamet- 
rically opposite and leaving the po- 
lar point k e d .  

particularly, the fractional quantum Hall effect (FQHE). [Since it is 
not our main purpose to treat the physics of the FQHE, for which 
there is a large literature available (16, 171, we offer here a highly 
condensed and heuristic discussion. The actual calculation of frac- 
tional statistics, by adiabatic transport of a good variational state, 
was performed by Arovas et al. (15).] For our purposes it suffices to 
state that the FQHE fluid, at certain "magic" ratios v of electron 
density to flux density, is incompressible-there is a finite energy 
needed for deviations in the electron density from the special value. 
We call these special states 9, (where m is an odd integer). Such a 
state is characterized by the existence of precisely m flux quanta for 
each electron, giving v = llm. 

It turns out that there exist excitations in this fluid which are 
vortices (18-20). A simple example of a variational wave function for 
a single vortex is Laughlin's quasihole state (18) 

where z, = xj + iyj is a complex representation of the particle 
coordinates, zv  is the vortex position, and T,, is the v = llm ground 
state. It is clear from Eq. 13 that there is a vortex at z,, in the sense 
that adiabatic transport of any single particle (zj) in a closed path 
encircling zv  gives a phase winding of   IT; the phase winding is 
manifest in the analytic zeros of Tv .  We see that this excitation acts 
very much like a flux tube with an integer amount of flux. Now we 
ask, what "charge" is associated with this "flux"? The counting is 
straightforward: there is one vortex for each flux quantum (excess or 
deficient) relative to the preferred value v = llm. The incompress- 
ible fluid then excludes from itself precisely ? llm of an electron per 
vortex in order to maintain the commensuration v = llm every- 
where away from the vortices. The resulting composite-a fraction 
of an electron ("charge"), bound to an integral vortex ("fluxn)-has 
fractional statistics (1 5 )  

This, briefly, is how nature has made an anyon: by binding a well- 
defined, fractional charge to an integral vortex in a two-dimensional 
fluid. We should emphasize that the charge is bound to the vortex- 
the zero of the wavefunction-and not to a physical quantum of 
magnetic flux. 

Several suggestions have been made for other candidates for 
fractional statistics-for example, vortices in superfluid He films 
(21). Laughlin (22) and Wen, Wilczek, and Zee (23) have argued on 
rather general and compelling grounds that two-dimensional, frus- 
trated spin systems should contain excitations carrying fractional 
(112) spin (instead of charge) excitations which obey fractional 
statistics. Laughlin has found a somewhat artificial, but nevertheless 
intriguing, model (24) for which the ground state has precisely these 
properties (because it is equivalent to his FQHE ground state for 
bosons at v = 112). Note that the broken time reversal (T )  symme- 

Fig. 6. The piercing of a charge (which is confined to two dimensions) with 
a flux tube. The resulting composite can have fractional statistics. To date, 
experimentalists have not succeeded in performing this operation; however, 
nature has been (as always) more clever. [Copyright 1989 World Scientific. 
Reprinted from Shapere and Wilczek (26) with permission] 

try of the fractional statistics quasiparticles in the FQHE case is 
easily understood, since the symmetry is already broken by the 
magnetic field. In the case of frustrated spin systems, the appear- 
ance of excitations with fractional statistics implies that T symmetry 
is broken spontaneously (which is not unusual for magnetic sys- 
tems). Such a system could then assume either chirality (right- or 
left-handed). 

Let us briefly review the ideas presented thus far. We have 
presented an argument for the existence in two dimensions of 
objects which are neither fermions nor bosons, but rather entities 
which give rise to a complex phase upon exchange. The argument is 
based on an appeal, not to the properties of wavefunctions, but to 
the topology of space and the identity of quantum particles. We 
have shown that such objects (anyons) must in fact have a handed- 
ness or chirality, that their properties do not respect time reversal 
symmetry, and that the many-particle problem is significantly more 
complex than that for bosons or fermions. We can name one system 
(the FQHE) for which there is strong evidence of well-defined 
quasiparticles with fractional charge and fractional statistics. Given 
our belief in the above reasoning, and in the correctness of the 
FQHE picture, we see no reason to expect the number of systems in 
which fractional statistics may be physically realized in the labora- 
tory to remain h e d  at one. Thus we feel that systems of anyons 
merit attention and study because they are possible--quantum 
mechanically and physically. 

Quantum Mechanics with Fractional Statistics 
Let us then take anyons seriously and ask, what might be the 

properties of an "ideal gas" of such particles? We might ask, for 
example, what the momentum distribution h c t i o n  is. Is it in some 
sense intermediate between Bose and Fermi? The answers to such 
questions are difficult to obtain, due to the complexity of the "many- 
anyon" problem alluded to above. This problem may be attacked in 
basically one of two ways-just as we did for the Aharonov-Bohm 
problem. One option is to treat the statistical phases as arising from 
a fictitious flux which is attached to bosons (or fermions), and which 
thus appears in a Hamiltonian for bosons (or fermions) which are 
interacting-via a long-ranged, vector potential. Alternatively, the 
anyons may be treated as "noninteracting" if their statistics is treated 
as a boundary condition to be imposed on eigenfunctions of a free- 
particle Hamiltonian. This is the standard approach for the ideal 
Bose and Fermi gases. The catch is, for anyons, the exchange phase 
is path-dependent. Thus a wavefunction for noninteracting anyons, 
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obeying the proper boundary conditions, must be multivalued; it 
may be written in the form (4, 25) 

Here Z = {z,, z2, . . ., zN) is the configuration of N particles in 
terms of the complex coordinates z; = xi + iyi. The function & is 
completely symmetric in the {zi), and the proper phases are account- 
ed for by the prefactor off,, which is a pure phase and is multivalueci 
for 0171. f integer. The parameter 0 is again the statistics angle: 
q = exp i 0. While Eq. 15 is very compact and gives the proper 
phases, it has had limited use because it is difficult to find (single- 
valued) hnctions & for which +(Z) satisfies the free-particle 
Hamiltonian. There is, however, a partial solution to a three-body 
problem in the form of Eq. 15 by Wu (4). 

The two-body problem can be solved exactly. This information 
can then be used to compute thermodynamic quantities which 
depend only on two-body properties. Examples are the second virial 
coefficient of an ideal anyon gas (25-27) and the specific heat of a gas 
of dimers (25) whose spectrum is given above in Eq. 12. 

The original anyon model (chargelflux composite) has proven to 
be the most useful approach so far for treating many anyons. In this 
picture, anyons are charged bosons or fermions with attached f l u .  
The charge and flux are both in a sense fictitious. That is, they can be 
assumed to have no effect other than to give rise to the appropriate 
phases for relative motion. The particles are bosons or fermions in 
the sense that p = 21,  that is, their wavefimctions have good 
permutation symmetry. The price paid, as noted above, is that their 
true statistics 7 is placed in the Hamiltonian-the particles interact 
with a long-ranged vector potential. As we have tried to show before 
with a simple example, this transformation (that is, placing all or 
part of the statistical interaction 7 in the Hamiltonian) is exact: for 
example, bosons with 0 = 71. really are fermions. This model allows 
us to work with well-known tools: single-valued wavefunctions, 
well-defined commutation relations, and so on, but the statistical 
interaction clearly is not in any sense "weak." 

One reason the "original anyon" model has been useful for 
theorists is that, once the particle statistics is treated as an interac- 
tion, one can imagine treating this interaction at the mean-field 
level; that is, there can be a mean-field theory of statistics (26, 28, 
29). If we take one anyon as a charge with bound flux and ask how 
he sees his fellows on average, the answer is: as a uniform magnetic 
field. The strength of this field is, of course, determined by the 
density and statistics (T!) of the particles. If the wavehnction is 
symmetric (the anyons are interacting bosons), then the bosons 
must be given a hard-core repulsion to enforce the prohibition 
against double occupancy. Thus the simplest approach to using the 
mean-field theory of statistics is to let the wavefunction be appropri- 
ate to fermions-which automatically enforces the constraint-and 
then to correct 7 from (-1) with attached flux. This model, at the 
mean-field level, is exactly soluble: it is noninteracting two-dimen- 
sional electrons in a uniform magnetic field, whose states are Landau 
levels (16). 

The notion of a mean-field theory of statistics is more than just a 
useful calculational technique. It is a novel source of ideas and 
insights. In the last paragraph, it was implicitly assumed that the 
fictitious or "statistical" f l u ,  when smeared out or averaged, could 
in fact be modeled, not by a uniform fictitious flux, but by a true 
magnetic field. This is, in fact, not a small step: the former flux, 
besides being highly nonuniform and mobile, has no classical effect 
whatever, while the latter produces a classical Lorentz force on the 
particles and is uniform. Nevertheless, the idea is very interesting. 
Let us suppose that the mean-field theory is not a bad approxima- 
tion. Then an experimentalist can, after confining a batch of 

electrons to two dimensions in the laboratory, effectively alter their 
statistics with a magnet! 

We have, of course, overstated the case, but there is some truth in 
the idea. For instance, for the FQHE fluid (m flux quanta per 
electron, m an odd integer), the electrons are, in the sense of mean- 
field theory, bosons (in zero net field) (30, 31). Does it make sense 
to think of the FQHE fluid as a two-dimensional Bose superfluid? 
The answer seems to be, yes, with some caution (20, 32). The 
FQHE fluid can support a dissipationless flow of current. Its 
excitation spectrum is similar to that of superfluid He in that there is 
a "roton" minimum and its localized excitations are vortices. 
Furthermore, it is possible to define a kind of one-body off-diagonal 
long-range order (31) in the density matrix analogous to that for the 
Bose superfluid. The differences between the two fluids are also 
large (20), which is not surprising: the FQHE fluid is incompress- 
ible, the energy for a single vortex is finite, the vortices are charged, 
and, of course, it exhibits a Hall effect. Nevertheless, the FQHE is a 
good example of the utility and interest of the ideas implicit in the 
mean-field theory of statistics: that a magnetic field can, in some 
sense, renormalize the statistics of particles in two dimensions. 

Thus, the idea of a mean-field theory of statistics-which is truly 
novel, and not obviously reasonable-has some appeal, and some 
limitations. How might it be tested? The FQHE itself is a partial test 
of mean-field theory, as we have just described; but there are better 
tests. Laughlin (28) constructed a variational wavehnction in the 
form of Eq. 15, with the important difference that the function f 
is antisymmetric-it is the mean-field fermion solution. The prefac- 
tor then gives the correct statistics T-for instance, for 0 = T the 
fermions become bosons. Fetter, Hanna, and Laughlin improved 
upon the mean-field solution in another way, using perturbation 
theory (29) to include fluctuations about the mean field. In each 
case, the results obtained for "effective bosons" were physically 
reasonable-for example, a logarithmically diverging vortex energy 
(28), and a linearly dispersing phonon mode at small wavevector- 
restoring the compressibility (29). 

We have also been able to test the mean-field theory. We have 
numerically obtained exact solutions for a few (-8) anyons on finite 
lattices (30) and compared them to the mean-field theory results for 
the same problem. We placed the statistics (7) in H-that is, the 
anyons were modeled as bosons with attached flux. Thus, we could 
directly compare two (formally) bosonic wavefimctions: +,, for 
bosons with attached flux (which are exactly anyons), and +,f for 
bosons in a uniform magnetic field. The direct comparison of the 
two is then the overlap M = ~(+,,+,~)l. Figure 7 shows a contour 
plot of the magnitude M as a function of the statistical f l u  attached 
to the bosons (horizontal axis) in $,,, and the uniform flux in $,f 
(vertical axis). According to mean-field theory there should be a 
"ridge" of large overlap M ,  starting from the origin (where both 
fluxes are zero!). Its slope in the figure should be numerically equal 
to the particle density-which is the scale factor for converting the 
two fluxes. These predictions are generally well confirmed in Fig. 7, 
and in the other cases which we tested. Our results for finite systems 
thus give some credence to the notion that a mean-field theory of 
statistics, while admittedly an approximation, may not be a bad 
approximation for treating statistics in two dimensions. 

Finally, we comment briefly on the two-dimensional analog of the 
spin-statistics connection. The spin r of a quantum particle deter- 
mines the phase 6 which is associated with a 271. rotation, according 
to 6 = exp i271.s. The statistics 7 is the phase due to exchange of two 
such objects: T = exp i0. The spin-statistics theorem says that 

We note that it is at least possible for such a connection to hold in 
two dimensions, for fractional statistics, because the two-dimension- 
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a1 rotation group SO(2) is infinitely connected (as is c2) and so 
allows for any eigenvalue s for the spin (33). This means, less 
esoterically, that a closed path in the continuous group S0(2) ,  
representing a rotation by n271., cannot be deformed to the trivial 
path (no rotation) for any n. In three dimensions, we had to become 
used to the idea that a 271. rotation is not equivalent to no rotation. 
In two dimensions, the same holds for any multiple of 271.. 

Thus, from the topological point of view, the spin-statistics 
connection is plausible. I t  requires a mapping of paths in one space 
[S0(2)]-representing rotations-to paths in another space with 
similar topological properties (c2)-representing exchanges. The 
three-dimensional version can be seen in the same light since the two 
spaces in this case-SO(3) and c3-are doubly connected. We 
mention three approaches to the spin-statistics connection, in order 
of increasing formalim which apply to fractional statistics: a simple 
stunt with a belt, performed by Feynrnan (34), a more respectable 
but still accessible presentation by MacKenzie and Wilczek (33), and 
a highly formal derivation by Frohlich and Marchetti (35). Wilczek's 
original papers on anyons (14) also emphasized that they obeyed the 
generalized spin-statistics connection-as do their three-dimension- 
al analog, dyons. It should be noted that the spin (intrinsic angular 
momentum) is associated with allowing the charges to see their own 
flux. 

Ground States for Many Anyons 
In spite of a paucity of exact solutions for the thermodynamic 

limit (36), there is a growing consensus among workers in this field 
that certain many-body ground states which occur for fermions or 
bosons should have analogs in the anyon case. One class of states are 
those of the quantum Hall effect. The history of this idea, briefly, is 
as follows. Experiments have shown the characteristic signatures of 
the FQHE for Landau level filling fractions v f llm, in addition to 
the (stronger) signs at v = llm. In 1983, Haldane (37) proposed a 

Fig. 7. Contour plot of the overlap M of exact anyon ground states and 
mean-field ground states. The exact anyon states are obtained by attaching 
"flux" (a,) to bosons; the mean-field states, by spreading a uniform flux 
(cu,f) throughout. According to mean-field theory, the overlap of the two 
( M )  should be large along a ridge of slope 112 (Aa,dAas) extending from 
the origin. This ridge is visible in the figure; the overlap is typically -0.7 
along the ridge. [Copyright 1989 American Institute of Physics. Reprinted 
from (30) with permission] 

remarkable picture for these unexplained fractions: that the quasi- 
particles, arising in increasing numbers as v is tuned away from llm, 
could themselves "condense" into a QHE liquid when an analogous 
commensuration is obtained. Haldane's insight, which was key to 
this picture, was that the quasiparticles, which are vortices, acquire 
phase shifts when they move with respect to the particles (electrons), 
just as do particles moving with respect to vortices. Hence, for the 
quasiparticles, the "parent" QHE fluid plays the role of the uniform 
magnetic field. The "analogous commensuration" is thus of quasi- 
particles to particles (with care to avoid double counting), just as the 
commensuration in the parent fluid is of particles to flux. Since the 
picture obtained is essentially a QHE within a QHE (with possible 
recursion), these states are called "hierarchy" states. This picture of 
the hierarchy states as a QHE of fractional statistics quasiparticles, 
embedded in a parent QHE fluid, is generally accepted, although by 
no means proven. 

Our nukrical  work with small systems tends to confirm this 
picture. We use the fact, as shown by Girvin and MacDonald (31), 
that it is possible to define a type of one-body off-diagonal long- 
range order (ODLRO) which characterizes the QHE fluid, just as 
the Bose superfluid is characterized by a simple one-body ODLRO. 
Suppose is a Bose wavefunction showing ODLRO, and suppose 
further that some other particles with statistics 7 = exp i0 have a 
wavefunction (in the "n~ninteractin~," multivalued form) 

That is, these particles have, in some sense, a wavefunction like a 
Bose superfluid, corrected by their statistics. Girvin and MacDonald 
(31) showed that one can define a "hidden" ODLRO (call it 
ODLRO*) for the state given by Eq. 17, and further that this 
ODLRO* is characteristic of the QHE. This is in fact a precise way 
of defining the relationship between the Bose superfluid and the 
QHE. It is also the only known manner in which fermions--or 
anyons--can show a form of ODLRO in a one-body density matrix. 

We observe that, if one placed the statistics of the particles of Eq. 
17  into the Hamiltonian-treating them as bosons with attached 
flux-then their wavefunction could be directly compared with the 
Bose state $h. If they were in the state given by Eq. 17  then the 
overlap would be 1, and we would call the state a QHE state. This is 
what we did with our numerically obtained ground states for anyons 
in magnetic field, finding very large overlaps with free boson states 
at those values of field where a QHE state is expected-that is, 
where the anyons are bosons at the level of mean-field theory. We 
also observed the expected deep minimum in the ground-state 
energy (Fig. 8) at the commensuration point. The fractions (anyon 
densitylflux density) which we find are the same as those predicted 
by Halperin (38) and Haldane (37). This work thus confirms, by 
direct calculation of anyon states, the picture of the hierarchy states 
obtained from previous theoretical work. 

Another form of anyon superfluid was recently proposed by 
Laughlin (22, 28). Since Laughlin gave the picture quite effectively 
in his article (22), we will be brief. We know that fermions can form 
a two-body condensate, showing a two-body form of ODLRO, in 
which a macroscopic number of pairs in the fluid are in a single 
quantum state-just as many Bose particles are in a single quantum 
state in a Bose superfluid. This is possible because pairs of fermions 
are, in some sense, bosons-for instance, if they are tightly bound in 
real space, then for energies small with respect to the binding 
energy, they are bosons. Laughlin pointed out that pairs of particles 
with statistics angle 0 = 71.12 are also bosons-since, in the real-space 
picture, exchange of two bound pairs of anyons gives (exp i ~ ) ~ -  
which is 1, for 0 = 71.12. Generalizing this, one can imagine n-body 
composites for other values of n than 2, and other statistics, which 
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may form a superfluid possessing an n-body ODLRO. Finally, if the 
anyons are charged, the superfluid should then be a superconductor. 

Anyon superconductivity is a remarkable and ingenious idea, and 
it seems that it is almost certainly correct. Work in this area is 
presently expanding rapidly, and so we do not feel that it is possible 
to give an adequate review at this time. We will say that, to our 
knowledge, everyone (perhaps a biased set!) who has looked at the 
question theoretically, including ourselves, has confirmed the idea 
that anyon superconductivity exists in principle (22, 23, 28, 29, 39, 
4&43), for certain rational fractional values of the statistics angle 
011~.  The properties of anyon superconductors are still being worked 
out, although there is some agreement developing on some familiar 
analogs from fermion superconductors (the Meissner effect and flux 
quantization, for example) (29, 4&42). 

Beyond the question of the existence in principle of anyon 
superconductivity is another question raised by Laughlin (22) : does 
it exist in fact, in the two-dimensional, strongly magnetic planes of 
the high-temperature superconductors? This question, of course, 
remains unanswered. It awaits a detailed theory of anyon supercon- 
ductors which allows for a conclusive experimental test. A number 
of tests have been suggested, based on signatures expected to arise 
from the broken time reversal symmetry (39, 40, 44, 45) of the 
anyons. Many of these signatures face the problem that they are 
strongly canceled out if, as is possible, the many stacked planes of 
the crystal choose alternating chirality. We have proposed a signa- 
ture (42) which is independent of chirality and thus does not cancel 
for many stacked planes. One can say little more at this poin:, as the 
field is new and in a rapid state of flux. 

We want to emphasize that the two questions mentioned above 
are quite separate. It is worthwhile to study the possibility and 
properties of anyon superconductors, whether or not they have 
anything to do with the current materials of interest. This point is 
perhaps in danger of being overlooked in the face of the current 
intense interest in high-temperature superconductivity. 

Fig. 8. Ground-state energy for eight "half-statistics" particles (0 = 7~12) as a 
function of magnetic field (amf). The deep minimum is the quantum Hall 
(QHE) state; the smaller minimum around zero field is a state which shows 
superconducting pairing (as evidenced by flux quantization). 

Finally, we wish to offer a caveat. We have noted that the only 
way (so far) that we can imagine for anyons to appear in nature is as 
vortices in a fluid, which in turn is confined to two dimensions. We 
have also noted, while thinking about the hierarchy states of the 
QHE above, that these vortices "see" the background fluid as an 
effective magnetic field. Thus, we ask: is there any way to make an 
anyon which is not embedded in an effective magnetic field? If there 
is not, can the proposed superconducting state survive this effective 
magnetic field? We know that the QHE state can, since it prefers a 
certain magnetic field and tolerates some deviation from the pre- 
ferred value. We raise these questions because they seem to be 
fundamentally important, and they have not been addressed in 
theories of anyon superconductivity. A small part of an answer 
might be obtained from Fig. 8. The horizontal axis is magnetic field, 
and the small dip in the center is the "superconducting" state (we 
use quotation marks since there are only eight particles). The large 
dip at the left is the QHE state, which, in all our simulations to date, 
is considerably more robust than the superconducting state in the 
face of variations in magnetic field. 

Conclusions 
It is clear that the quasiparticles of the FQHE can be viewed as 

anyons-at sufficiently large separations that they do not significant- 
ly interpenetrate, and at sufficiently low energies that their parent 
fluid remains two dimensional. Further work is needed to clarifp the 
limits within which the anyon model gives the correct physics. This 
is similar to the physics of helium atoms, which may be modeled as 
repulsive bosons as long as they do not interpenetrate too much, or 
ionize. The crucial and very interesting difference is, of course, that 
the repulsive Bose gas is fairly well understood-while the study of 
the anyon gas is still largely ahead of us. We note that, while an 
unambiguous experimental demonstration of the fractional statistics 
of the quasiparticles is probably extremely difficult, there is already 
some interesting evidence for their fractional charge (46). 

We have noted a theoretical obstacle to the realization of anyon 
superconductivity: that anyons which are vortices (as are all candi- 
dates to date) feel a large (fictitious) magnetic field due to the 
background fluid in which they move-a field which is, in general, 
too large to allow a superconducting ground state. This problem 
may perhaps be resolved by, for example, some other mechanism for 
generating fractional statistics, or by a lattice commensuration 
which renders the fictitious field innocuous. Assuming that this 
obstacle can be overcome in some instances, there remains the 
practical question of the realization of anyon superconductivity in 
the laboratory. There is currently a vigorous theoretical effort 
towards a better understanding of the properties of anyon supercon- 
ductors-in particular, those properties which might serve as an 
unambiguous signal of the broken time-reversal symmetry of the 
anyon state. Such an understanding is needed as a guide to the 
experimental search for this new type of superfluid. Perhaps, as 
suggested by Laughlin (22), we will find that anyon superconductiv- 
ity has already been realized in the high-temperature superconduc- 
tors; certainly the question deserves serious attention. In the event 
of a negative answer, the possibility of anyon superconductivity, 
once raised, will stand as a challenge to physicists from now on. We 
need only recall the First Law of Physics: "whatever is not forbidden 
is compulsory." 
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" He's nice, but he's rather obtuse." 
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