
perikarya or fibers within the graft or evi- 
dence that NPY fibers were entering the 
graft from the host. In contrast to implants 
that contained the SCN, cortical implants 
never restored rhythmicity to the host. Cor- 
tical implants always contained a few NPY 
perikarya and many fibers. In cortical im- 
plants, NPY fibers were always seen to cross 
the host-graft border, and most crossing 
fibers seemed to originate from the host. 

Although most of our implants contained 
some portion of extra-SCN tissues (Fig. 3, 
A and D), the immunocytochemical analysis 
showed that grafts that restored rhythmicity 
always contained cells with SCN characteris- 
tics (VIP and vasopressin). Therefore, the 
period of the overt rhythm is determined by 
cells within, or very close to the SCN. This 
observation is in agreement with reports 
showing that the SCN is required for suc- 
cessful restoration of rhythmicity (11-14, 
23). 

In most of our locomotor data, rhythmic- 
ity was visually apparent within 6 to 7 days 
after transplantation. Although surprisingly 
short, this latency does not preclude the 
possibility that nkural reconnections drive 
the behavior since dense neural outgrowth 
has been reported from other transplanted 
tissue with a similar time course (24). Im- 
munocytochemical analysis indicates that 
neural connections have been made between 
graft and host brain; however, it was not 
iossible to determine the source of fibers 
crossing the graft boundary. 

The fact that the genotype of the host 
does not appear to affect significantly the 
expression o f  the transplanted rhythm is 
somewhat surprising, especially in view of 
evidence for the existence of oscillators out- 
side the SCN in the mammalian brain (15, 
16). We interpret the absence of a host 
contribution to the circadian period to mean 
that either the SCN is essentially autono- 
mous in determining the prirnarycharacter- 
istics of rhythmicity in hamsters or that the 
host brain fails to make the connections with 
the tissue graft that are required for the 
brain to influence this period. In either case, 
our results strengthen the view that the SCN 
occupies a position at the top of the circadi- 
an hierarchy in mammals. 
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Regularization Algorithms for Learning That Are 
Equivalent to Multilayer Networks 

Learning an input-output mapping from a set of examples, of the type that many 
neural networks have been constructed to perform, can be regarded as synthesizing an 
approximation of a multidimensional function (that is, solving the problem of 
hypersurface reconstruction). Prom this point of view, this form of learning is closely 
related to classical approximation techniques, such as generalized splines and regular- 
ization theory. A theory is reported that shows the equivalence between regularization 
and a class of three-layer networks called regularization networks or hyper basis 
functions. These networks are not only equivalent to generalized splines but are also 
closely related to the classical radial basis functions used for interpolation tasks and to 
several pattern recognition and neural network algorithms. They also have an 
interesting interpretation in terms of prototypes that are synthesized and optimally 
combined during the learning stage. 

M OST NEURAL NETWORKS AT- puts from a set of correct input-output pairs, 
tempt to synthesize modules that called examples. Some of the best known 
transduce inputs into desired out- applications are a network that maps En- 

glish spelling into its phonetic pronuncia- 
tion (1) and a network that learns the map- 

Artificial Intelligence Laboratory, Center for Biological 
Information Processine. Massachusetts Institute ofTech- ping a chaotic d~namical 
nology, Cambridge, fi 02139. system, thereby predicting the future from 

SCIENCE, VOL. 247 



the past (2). In these cases, learning takes 
place when the weights of connections in a 
multilayer network of simple units are 
changed, according to a gradient descent 
scheme called backpropagation (3). I t  would 
be highly desirable to establish theoretical 
foundations for using multilayer networks 
of this general type to learn from examples. 
To show how this goal can be achieved, we 
first explain how to rephrase the problem of 
learning from examples as a problem of 
approximating a multivariate function. 

To illustrate the connection, let us draw 
an analogy between learning an input-out- 
put mapping and a standard approximation 
problem, two-dimensional (2-D) surface re- 
construction from sparse data points. Learn- 
ing simply means collecting the examples, 
that is, the input coordinates xi, y; and the 
corresponding output values at those loca- 
tions, the heights of the surface d;. General- 
ization means estimating d at locations x, y 
where there are no examples, that is, no 
data. This requires interpolating or, more 
generally, approximating the surface (the 
function) between the data points (interpo- 
lation is the limit of approximation when 
there is no noise in the data). In this sense, 
learning is a problem of hypersurface recon- 
struction (4, 5) .  

From this point of view, learning a 
smooth mapping from examples is clearly an 
ill-posed problem (6), in the sense that the 
information in the data is not suflicient to 
reconstruct uniquely the mapping in regions 
where data are not available. In addition, the 
data are usually noisy. A priori assumptions 
about the mapping are needed to make the 
problem well-posed. One of the simplest 
assumptions is that the mapping is smooth: 
small changes in the inputs cause a small 
change in the output (7). 

Techniques that exploit smoothness con- 
straints in order to transform an ill-posed 
problem into a well-posed one are well 
known under the term of regularization 
theory (6, 8). Consider the inverse problem 
of finding the hypersurface Ax), given its 
value di on a finite set of points {ti} of its 
domain. This problem is clearly ill-posed 
because it has an infinite number of solu- 
tions, and some constraint must be imposed 
on the solution. A standard technique in 
regularization theory solves the problem by 
minimizing a cost functional consisting of 
two terms. The first term measures the 
distance between the data and the desired 
solution j the second term measures the 
cost associated with the deviation from 
smoothness. Its form is l l ~ n l ~ ,  where P is 
usually a differential operator, called a stabi- 
lizer, and 1 1 . 1 1  is a norm on the function 
space to which P f belongs (usually the L~ 
norm). The term is small for smooth f 

whose derivatives have small norms. Thus. 
the method selects the hypersurface f that 
solves the variational problem of minimiz- 
ing the functional 

where d; are the values of the hypersurface at 
the given N points e;, and A, the regulariza- 
tion parameter, controls the compromise 
between the degree of smoothness of the 
solution and its doseness to the data (91. For 

\ ,  

instance, in one dimension with 

the function f(x) that minimizes the func- 
tional of Eq. 1 is a "cubic spline," a curve 
that is a cubic ~o lvnomid  between the 

1 ,  

knots, with continuous second-order deriva- 
tive at the knots (10). 

The formulation of the learning problem 

f 
Fig. 1. The HyperBf network used to approxi- 
mate a mapping between XI,  x2, . . ., x,, and f; 
given a set of sparse, noisy data. The data, a set of 
points for which the value of the function is 
known, can be considered as examples to be used 
during learning. The hidden units evaluate the 
function G(x;t,), and a fixed, nonlinear, invert- 
ible function may be present after the summation. 
The units are, in general, fewer than the number 
of examples. The parameters that may be deter- 
mined during learning are the coefficients c,, the 
centers t,, and the matrix W. In the radial case, G 
= G(llx - t,11%) and the hidden units simply 
compute the radial basis functions G at the "cen- 
ters" t,. The RBFs may be regarded as matching 
the input vectors against the "templates" or "pro- 
totypes" that correspond to the centers (consider, 
for instance, a radial Gaussian around its center, 
which is a point in the n-dimensional space of 
inputs). Updating a center t, during learning is 
equivalent to modifying the corresponding proto- 
type. Changing the weights W corresponds to 
performing dimensionality reduction on the input 
features. In addition to the linear combination of 
basis functions, the figure includes other terms 
that contribute to the output: constant and linear 
terms are shown here as direct connections from 
the input to the output with weights ao, al, az, . . . 
an (37). 

in terms of regularization is satisfying from a 
theoretical point of view, because it estab- 
lishes connections with a large body of 
results in the area of Bayesian estimation and 
in the theory of approximation of multivari- 
ate functions (11). In particular, Eq. 1 can 
be used to define generalized splines in any 
dimension. At this point, it is natural to ask 
about the connection between this perspec- 
tive on learning as an approximation prob- 
lem and feedforward networks, such as 
backpropagation, that have become popular 
recently, exactly because of their capabilities 
to "learn from examples." 

In the following, we provide an answer to 
the previous question by showing that the 
solution to the approximation problem giv- 
en by regularization theory can be expressed 
in terms of a class of multilayer networks 
that we call regularization networks or 
hyper basis functions (HyperBFs) (see Fig. 
1) and that are similar to previously suggest- 
ed networks (12, 13). Our main result is that 
the regularization approach is equivalent to 
an expansion of the solution in terms of a 
certain class of functions that depends only 
on the form of the stabilizing operator. We 
explain how this expansion can be interpret- 
ed in terms of a network with one layer of 
hidden units whose characteristics are dictat- 
ed by the theory. We also discuss a computa- 
tionally efficient scheme for synthesizing the 
associated network from a set of examples, 
which has an interesting interpretation and 
several promising extensions. 

We outline first how an approximation in 
terms of a specific class of functions, often 
radial, can be derived directly from regular- 
ization. The regularization approach selects 
the function f that solves the variational 
problem of minimizing the functional of Eq. 
1. It can be proved (5) that the solution has 
the following simple form: 

where G(x) is the Green's function of the 
self-adjoint differential operator fi, @ being 
the adjoint operator of P, and the coeffi- 
cients c; satisfy a linear system of equations 
that depend on the N "examples," that is, 
the data to be approximated (14). If P is an 
operator with radial symmetry, the Green's 
function G is radial and therefore the ap- 
proximating function becomes: 

which is a sum of radial functions, each with 
its center ti on a distinct data point. Thus 
the number of radial functions, and corre- 
sponding centers, is the same as the number 
of examples. 

Our derivation shows that the type of 
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basis functions depends on the s t a b i h r  P, 
that is, on the specific a priori assumption 
(5). Depending on P we obtain the Gaussian 
G(r) = e - ( ' ' ~ ) ~ ,  the well-known "thin-plate 
spline" G(r) = r2 In r, and other specific 
functions, radial or not (15). As observed by 
Broomhead and Lowe (12) in the radial 
case, a superposition of functions such as 
that in ~ i .  3-is equivalent to a network of 
the type shown in Fig. 1. The interpretation 
of Eq. 4 is simple: in the 2-D case, for 
instkce, the surface is approximated by the 
superposition of, say, several 2-D Gaussian 
distributions, each centered on one of the 
data points. 

~ a i a t i o n  4 has the same form as an 
interpolation technique, called radial basis 
functions (RBFs), that has been extensively 
studied (16). In 1986 Micchelli proved a 
rnwerful result that justifies the i s e  of a 
large class of functions as interpolating 
RBFs (17, 18). It turns out (5) that the class 
of radial functions satisfying Micchelli's con- 
dition is closely related to the larger class of 
functions defined by Eq. 1. 

The network associated with Eq. 4 has a 
complexity (number of radial funcuons) that 
is independent of the dimensionality of the 
input space but is on the order of the 
dimensionality of the training set (number 
of examples), which is usually high. Broom- 
head and Lowe (12) used fewer centers than 
data points. A heuristic scheme with mov- 
able centers and Gaussian functions has also 
been proposed and tested (13). It turns out 
that our previous rigorous result can be 
extended in a natural way to a scheme in 
which the number of centers is much smaller 
than the number of examples. In the frame- 
work of regularization the consistent exten- 
sion we derive has the feature of center 
positions that are modified during learning 
(5) .  The extension is 

where the parameters t,, which we call 
"centers" in the radial case, and the coeffi- 
cients c, are unknown and are in general 
fewer than the data points (n 5 N) (19). 
Equation 5, which can be implemented by 
the network of Fig. 1, is equivalent to 
generalized splines with free knots, whereas 
Eq. 4 is equivalent to generalized splines 
with fixed knots. This scheme can be further 
extended by considering in Eq. 5 the super- 
position of dfferent types of functions G, 
such as Gaussians at Merent scales (20). In 
addition, the norm \\x - 541 may be consid- 
ered as a weighted norm 

where W is a matrix and the superscript T 
indicates the transpose. In the simple case of 

diagonal W, the diagonal elements wi assign 
a specific weight to each input coordinate. 
They play a critical role whenever different 
types of inputs are present. Iterative meth- 
ods of the gradient descent type can be used 
to find the optimal values of the various sets 
of parameters, the c,, the wij, and the t,, 
that minimize an error functional on the set 
of examples. Since this functional is no 
longer convex, a stochastic term in the gra- 
dient descent equations may be used to 
avoid local minima (21). 

The network of Fig. 1 may be interpreted 
as follows. The centers of the radial func- 
tions are similar to prototypes, since they are 
points in the multidimensional input space. 
Each unit computes a (weighted) distance of 
the inputs from its center, which is a mea- 
sure of their similarity, and applies to it the 
radial function. In the case of the Gaussian, a 
unit will have maximum activity when the 
new input exactly matches its center. The 
output of the network is the linear superpo- 
sition of the activities of all the radial func- 
tions in the network. One finds the corre- 
sponding weights during learning by mini- 
mizing a measure of the error between the 
network's prediction and each of the exam- 
ples. At the same time, the centers of the 
radial functions and the weights in the norm 
are also updated during learning. Moving 
the centers is equivalent to modifying the 
corresponding prototypes and corresponds 
to task-dependent clustering. Finding the 
optimal weights for the norm is equivalent 

to transforming appropriately, for instance, 
scaling, the input coordinates and corre- 
sponds to task-dependent dimensionality re- 
duction. 

Figure 2 shows a specific application of 
HyperBFs. Consider the problem of recog- 
nizing a wire-frame 3-D object from any of 
its perspective views. A view of the object is 
represented as a 2 N  vector XI, y 1, x2, y2, . . ., 
XN, y~ of. the coordinates on the image 
plane of N labeled and visible points on the 
object. Additional different types of features 
can also be used, such as angles between 
vertices. The network learns to map any 
view of the object into a standard view. The 
results with images generated with comput- 
er graphics tools (of the type indicated in 
Fig. 2B) are encouraging and have promis- 
ing extensions to more realistic data (22). 

Many existing schemes for networks that 
learn are encompassed by the HyperBF 
framework (5). Past work, in the special case 
of fixed centers, indicates good performance 
in a number of tasks (23). Our own prelimi- 
nary work, as well as earlier experiments of 
Moody and Darken with a similar network 
(13), suggests that the more general form of 
HyperBFs has a promising performance. 

The scheme is a satisfying theory of net- 
works for learning. HyperBFs are the feed- 
forward network versions of regularization 
and are therefore equivalent to generalized 
splines. The HyperBF network is similar to 
the architecture used for backpropagation, 
being a multilayer network with one hidden 

Fig. 2. (A) The HyperBF 
network proposed for the 
recognition of a 3-D object A B 

Y l  X 2  Y N  from any of its perspective 
views.   he neLtwo;k at- 
tempts to map any view (as 
defined in the text) into a 
standard view, arbitrarily 
chosen. The norm of the 
difference between the out- 
put vector f and the stan- 
dard view s is thresholded to 
yield a 0, 1 answer. The 2N 
inputs accommodate the in- 
put vector v representing an 
arbitrary view. Each of the 
K  RBF's is initially centered 
on one of a subset of the M T l"i'l I I f-s l I 
views used to synthesize the 
system ( K  I M).  During 
training each of the M in- 1 
puts in the training set is 
associated with the desired 0, 1 0, 1 
output, the standard view s. 
(6) A completely equivalent interpretation of (A) for the special case of Gaussian RBFs. Gaussian 
functions can be synthesized by multiply'ing the outputs of 2-D Gaussian receptive fields that "look" at 
the retinotopic map of the object point features. The solid circles in the image plane represent the 2-D 
Gaussians associated with the first RBF, which represents the first view of the object. The dotted circles 
represent the 2-D receptive fields that synthesize the Gaussian RBF associated with another view. The 
2-D Gaussian receptive fields transduce positions of features, represented implicitly as activity in a 
retinotopic array, and their product "computes" the radial function without the need to calculate norms 
and exponentials explicitly. See (5) for more details. 
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layer and two or even three sets of adjustable 
parameters. Its Boolean limiting version 
carves the input space into hy@rspheres, 
each corresponding to a center: a radial unit 
is active if the input vector is within a certain 
radius of its center and is otherwise silent. 
The Boolean limit of backpropagation 
carves the space with hyperplanes. With an 
arbitrary number of units each network can 
approximate the other, since each network 
can approximate arbitrarily well continuous 
functions on a limited interval (24, 25). 
Multilayer networks with sigmoid units do 
not have, however, the best approximation 
property that regularization networks have 
(25). The Boolean limit of HyperBF is 
almost identical to Kanerva's associative 
memory algorithm (26), which is itself close- 
ly related to vector quantization. Parzen 
windows, potential techniques in pattern 
recognition, and kernel estimation methods, 
in general (27), can be regarded as special 
cases of the HyperBF method. Close analo- 
gies between Kanerva's model and Marr's 
(28) and Albus's (29) models of the cerebel- 
lum also exist (5, 30). The update equation 
that controls the evolution of the centers t, 
[see Eq. 14 in (21)] is also similar to Kohon- 
en's t ~ ~ o l o ~ ~ - ~ r e s e r v i n ~  algorithm (5, 31) 
[which is also similar to the k-means algo- 
rithm (32)] and can be interpreted as a 
learning scheme in which the centers of the 
radial vfunctions move to find centers of 
clusters of input vectors (33). Coarse coding 
techniques and product units (34) can be 
interpreted neatly within the HyperBF 
framework (for the special case of Gaussian 
RBFs) (5, 35). 

Thus HyperBFs represent a general 
framework for learning smooth mappings 
that rigorously connects approximation the- 
ory and regularization with feedforward 
multilayer networks. In particular, it sug- 
gests that the performance of networks of 
this general type can be understood in the 
framework of classical approximation the- 
ory, providing limits onwhat feedforward 
networks may be expected to perform (5) .  

In the Gaussian case, it also suggests a 
scheme for learning a large class of map- 
pings that has intriguing features from the 
point of view of a brain scientist, since the 
overall computation is a simple but powerful 
extension of a look-up table, that is, a mem- 
ory, and can be performed by the superposi- 
tion of "units," in the appropriate multidi- 
mensional input space. These units would 
be somewha; similar to "grandmother" fil- 
ters with a graded response, rather than 
binary detectors, each representing a proto- 
type. They would be synthesized as the 
conjunction of, for instance, 2-D Gaussian 
receptive fields looking at a retinotopic map 
of features (see Fig. 2B). During learning, 

the weights of the various prototypes in the 
network output are modified to find the 
optimal values that minimize the overall 
error. The prototypes themselves are slowly 
changed to find optimal prototypes for the 
task. The weights of the different input 
features are also modified to perform task- 
dependent dimensionality reduction. 

A scheme of this type is broadly consistent 
with recent physiological evidence [see, for 
instance, (36)] on face recognition neurons 
in the monkey inferotemporal cortex. Some 
of the neurons described have several of the 
properties expected from the units of Fig. 2 
with a center, that is, a prototype that 
corresponds to a view of a specific face. A 
similar scheme could be used to learn other 
visual tasks, such as the computation of 
color constancy or shape from shading from 
a set of examples, although the biological 
relevance in such cases is more questionable. 
In any case, it remains to be seen whether 
some cortical neurons indeed have the mul- 
tidimensional, possibly Gaussian-like, recep- 
tive fields suggested by this approach. 
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