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Secondary Structure Is the Major Determinant for 
Interaction of HIV rev Protein with RNA 

A region in the human immunodeficiency virus (HIV) env message, with the potential 
to form a complex secondary structure (designated RRE), interacts with the rev 
protein (Rev). This interaction is believed to mediate export of HIV structural 
messenger RNAs from the nucleus to the cytoplasm. In this report the regions 
essential for Rev interaction with the RRE are further characterized and the functional 
signiiicance of Rev-RRE interaction in vivo is examined. A single hairpin loop 
structure within the RRE was found to be a primary determinant for Rev binding in 
vitro and Rev response in vivo. .Maintenance of secondary structure, rather than 
primary nucleotide sequence alone, appeared to be necessary for Rev-RNA interaction, 
which distinguishes it from the mechanism for cis-acting elements in DNA. Limited 
changes within the 200 nucleotides, which preserved the proper RRE conformational 
structure, were well tolerated for Rev binding and function. Thus, variation among the 
RRE elements present in the diverse HIV isolates would have little, if any, effect on 
Rev responsiveness. 

T HE GENOME OF HIV IS MUCH 

more complex than other retrovi- 
ruses. In addition to the gag, pol, and 

env genes present in all retroviruses, it en- 
codes at least seven regulatory proteins. 
Two of these proteins, encoded by tat (1) 
and rev (2) (referred to as Tat and Rev, 
respectively) are absolutely required for vi- 
rus replication (3) and, thus, represent at- 
tractive targets for therapeutic intervention. 
The mechanisms proposed for Tat function 
are diverse, with both transcriptional (4, 5) 
and posttranscriptional components being 
considered (5, 6). In contrast, there is gener- 
al agreement that Rev exerts its effect at the 
posttranscriptional level to facilitate export 
of structural mRNAs, entrapped in the nucle- 

Department of Molecular Oncologv and Virology, 
Roche Institute of Molecular ~ i o l o ~ i  Roche Research 
Center, Nutley, NJ 07110. 

us, to the cytoplasm (7, 8). Export is most 
likely media tedthr~u~h a cis-act& element, 
referred to as RRE [originally referred to as 
CAR (9)]  (8), which is present in env. 

We and others have recently shown that 
Rev interacts specifically with RNA that 
contains the RRE sequence (10, 11). The 
predicted structure forked by base-pair in- 
teractions within the RNA that comprise 
the RRE element is shown in Fig. 1. Solu- 
tion mapping of the RRE RNA indicates .. . 

that the structure depicted is likely to be 
correct (12). Through RNA annealing ex- 
periments, we have shown that the large 
base- aired "stem structure" does indeed 
form and that its formation is required for 
Rev binding (10). This finding could be 
interpreted in several ways: (i) base-pairing 
interactions in this region are required for 
the appropriate formation of the other hair- 
pin structures, one or a combination of 

which may comprise the site for Rev interac- 
tion; (ii) Rev interacts directly with the stem 
structure itself; or (iii) ~ e v .  interacts with 
the large stem structure and other elements 
of secondary structure simultaneously. To 
distinguish between these possibilities, we 
introduced nucleotide changes into the stem 

Table 1. Activity of the RRE mutations in a Rev- 
response assay. The mutations shown were cloned 
into the Cla I-Xba I site of plasmid pIIIAR 
depicted in Fig. 4 and CHOZip-tatlII cells were 
transfected with 100 ng of each plasmid and 100 
ng of the Rev expression vector pSVRev. CAT 
assays were run for 30 mins, a time found to give 
a linear response. The percent conversion of 
['4C]chloramphenicol to acetylated products was 
determined by liquid scintillation counting of the 
spots cut from the thin-layer chromatography 
plate. The percent conversion per minute is given. 
The relative activity of each mutant is compared 
to that of pIIIAR, which was assigned a value of 
1.0. The low to barely detectable level of CAT 
activity obtained in the absence of Rev did not 
allow for quantitation. Rev binding was assessed 
by visual inspection of the gel retardation autora- 
diograms obtained from at least three indepen- 
dent experiments. The scoring ranges from best 
binding (+ + +) to no binding observed (-). 

Plasmid Conversion Ac- RevIRRE 
(%/min) tivity interaction 

pIIIAR 
HS- 1 
HS-2 
HS-1,2 
HB- 1 
HB-2 
HSL-6 
HSL-7 
HSL-8L 
HSL-8R 
HSL-8RL 
HSL-9 
HSL-1 
HSL-2 
HSL-3 
HSL-4 
HSL-5 
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is likely that Rev has several contact points 
within the RRE. Our previous observation 
that formation of the large stem structure is 
required for Rev interaction (lo), taken 
together with the findings reported here, 
suggests that Rev has contact points on both 
the large stem and the HSL-5 hairpin loop 
that are in close proximity. By deletion 
analysis of the RRE, Dayton et al.  (16) have 
also.found that maintenance of secondary 
structure is required for Rev response. In 
other experiments with the RRE elements 
obtained from the evolutionarilv conserved 
simian immunodeficiency virus (SIV) and 
HIV-2 viruses, we lind that both interact 
with the HIV- 1 Rev protein (1 7). However, 
the hairpin loop structures required for this 
interaction, which are also in close proximi- 
ty to the stem structure, bear little sequence 
similarity to the HIV-1 hairpin loop recog- 
nized by Rev. This observation strengthens 
our contention that structure, rather than 
simply primary sequence, determines Rev- 
RRE interactions. This may also explain 
how the human T cell lymphotropic virus 
type 1 (HTLV-1) Rex protein, which is 
unrelated to HIV-1 Rev, can substitute for 
Rev function (18). Furthermore, the strong 
correlation between the alteration of the 
binding in vitro and the functional charac- 
teristics of the mutant RREs in vivo sup- 
ports the hypothesis that binding of Rev to 
the RRE is of physiological relevance. 

The mechanisms by which Rev-RRE in- 
teractions facilitate export of HIV structural 
mRNAs from the nucleus to cytoplasm re- 
main to be determined. Whether Rev.acts by 
itself or in concert with host proteins to 
facilitate export is not known. We have 
recently purified a transdominant Rev pro- 
tein described by Malim et a l .  (19). Al- 
though nonfunctional in vivo, as reported, it 
does form a stable complex with the RRE 
(20). Thus, if Rev mediates export through 
interaction with a host transporter protein, 
the transdominant Rev is likely to lack this 
function. As an alternative explanation, the 
interaction of Rev with the RRE may facili- 
tate a conformational change in the RRE 
secondary or tertiary structure, which per- 
mits access of a host "transporter" factor 
that mediates export of HIV structural 
mRNAs from the nucleus to cytoplasm. If 
such a mechanism for control of HIV gene 
expression does exist, it is envisioned that 
this factor also plays a role in the normal 
posttranscriptional events that govern cellu- 
lar gene expression. Thus, HIV may have 
usurped a normal host control mechanism 
and added a further level of complexity. 
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Expanded HIV-1 Cellular Tropism by Phenotypic 
Mixing with Murine Endogenous Retroviruses 

In view of the current interest in in vivo murine models for acquired immunodeficien- 
cy syndrome (AIDS), the interaction between human immunodeficiency virus type 1 
(HIV-1) and endogenous murine leukemia virus (MuLV)-related retroviruses was 
investigated with a human leukemic T cell line (PF-382,) that acquired xenotropic 
MuLV (X-MuLV) after in vivo passage in immunosuppressed mice. Despite similar 
levels of membrane CD4 expression and HIV-1 1251-labeled gp120 binding, a dramatic 
acceleration in the time course of HIV-1 infection was observed in PF-382, compared 
to its X-MuLV-negative counterpart (PF-382). Moreover, PF-382 cells coinfected by 
X-MuLV and HIV-1 generated a progeny of phenotypically mixed viral particles, 
enabling HIV-1 to productively infect a panel of CD4- human cells, including B 
lymphoid cells and purified normal peripheral blood CD4-/CD8+ T lymphocytes. 
Mixed viral phenotypes were also produced by human CD4' T cells coinfected with an 
amphotropic MuLV-related retrovirus (A-MuLV) and HIV-1. These data show that 
endogenous MuLV acquired by human cells transplanted into mice can significantly 
interact with HIV-1, thereby inducing important alterations of HIV-1 biological 
properties. 

I T IS WBLL ESTABLISHED THAT HIV IS esis and for large-scale testing of new drugs 
the causative agent of AIDS and related and vaccines has prompted the search for 
disorders (1). The need for analytical experimental animal models of HIV infec- 

approaches to the study of AIDS pathogen- tion. On the basis of phylogenetic related- 
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