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Painting the Phase Space Portrait of an Integrable 
Dynamical System 

For an integrable dynamical system with one degree of freedom, "painting" the 
integral over the phase space proves to be very effective for uncovering the global flow 
down to minute details. Applied to the main problem in artificial satellite theory, for 
instance, the technique reveals an intricate configuration of equilibria and bifucations 
when the polar component of the angular momentum approaches zero. 

S EVERAL DEVELOPMENTS UNDERLIE 

the present revival in classical mechan- 
ics, including computerized algebraic 

processors and color graphics. Dynamical 
processes are very hard to detect beneath the 
surface of the differential equations. It takes 
a fair amount of tedious algebra to extract, 
by averaging or by normalization, the es- 
sence of the mechanism from the back- 
ground of short-term fluctuations and unre- 
markable perturbations. But to the benefit 
of nonlinear mechanics, computer algebra 
systems are becoming increasingly sophisti- 
cated. Once over the hurdle of tedious calcu- 
lations, one faces the obstacle of obtaining a 
global picture for the long-term trends in 
the system. Color graphics proves invaluable 
in visualizing the global behavior of the 
system and in discovering minutiae of local 
behavior hidden beneath the mass of calcula- 
tions. Pseudocoloring a function over a do- 
main, a widespread technique in applied 
mathematics, has produced stunning pic- 
tures; they have opened the eyes of math- 
ematicians to hitherto unsuspected phenom- 
ena in the dynamics of nonlinear maps (1). 
Extension to classical mechanics forces a 
search for refinements in the technique such 
as the automatic selection of colors to ensure 
enough contrast around isolated but close 
singularities. 

Here is an example of basic facts discov- 
ered by color graphics. It is borrowed from a 
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problem that has been vexing astronomers 
and space engineers since Orlov (2) uncov- 
ered the singularity of the "critical inclina- 
tion." Take a point mass in the gravity field 
of the earth; ignore for the moment all other 
bodies in the vicinity, the nongravitational 
forces (drag and radiation pressure), and 
even those parts of the earth's gravity field 
that are dependent on the longitude. Fur- 
thermore, in the remaining, ignore all zonal 
harmonics except the one caused by the 
equatorial bulge. Thus, the system is repre- 
sented by the Hamiltonian 

where the vectors x and X stand for the 
position and velocity of the spacecraft, re- 
spectively; r = ilxil is the geocentric distance. 
The parameters of the system are as follows: 
p,, the product of the gravitational constant 
and the mass of the earth; a, the equatorial 
radius of the earth; k, the direction of the 
polar axis of the earth; and a dimensionless 
quantity j2. The h c t i o n  P2 is the Legendre 
polynomial of degree 2. Hamiltonian Eq. 1 
defines the main problem in artificial satel- 
lite theory. This dynamical system admits 
two integrals: (i) the energy X per unit of 
mass, because X is time-invariant, and (ii) 
the projection H = k . G of the angular 
momentum G = x x X per unit of mass on 
the polar axis, because the group of rota- 
tions about k leaves X invariant. For lack of 
a third integral in involution with H, the 
consensus among experts is that the main 
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problem, Eq. 1, of artificial satellite theory is 
not integrable. 

Because J2 is approximately for the 
earth, the main problem may be regarded as 
a Keplerian system with Hamiltonian 

subject to a perturbation derived from the 
potential 

We restrict ourselves to the domain Xo < 0 
of bounded orbits sdiciently away from the 
hypersurface where G = IlGll = 0. In that 
region of phase space, averaging over the 
mean anomaly replaces the full model Eq. 1 
by an integrable approximation X expanded 
as a power series in the small parameter J2. 

Normalizing X by averaging is not a 
simple task by any means. It is so involved, 
in fact, that general purpose systems for 
symbolic algebra such as Macsyma, Maple, 
or Mathematica have yet to meet the chal- 
lenge. However, with a tool especially de- 
signed for carrying the developments ,typical 
of celestial mechanics, we produced 

to the fourth power in J2. The work was 
first done in FORTRAN on an advanced 
array processor (3) and was checked a few 
years later on a powerfid Lisp workstation 
(4). For our purposes, the reader needs to 
know only about the first three terms in Eq. 
4. Expressed in the variables (t ,  g, h, L, G, 
H )  introduced by Delaunay (5), these terms 
are (6) 

These terms are expressed in the averaged 
angles (t, g, h j  and actions (L, G, H). The 
angle t is the mean anomaly; g is the angle 
between the line of nodes and the semimajor 
axis; h is the angle between the line of nodes 
and a fixed direction in the earth equatorial 
plane. Together with the Keplerian variables 
a and e, we have introduced the quantities 

7 

Usually one thinks of the variables (a, e, g) 
as defining an ellipse with semirnajor axis a 
and eccentricity e whose position in its own 
plane is determined by the angle g of the 
major axis of symmetry. In these notations, 
the actions L and G are 

The inclination I of the plane containing 
ellipses with characteristics (a, e, g) is de- 
fined by the relations 

cos I = H/G, 0 5 I 5 IT (10) 

where H is the integral of polar angular 
momentum. To be concise, we set 

c = cos I, s = sin I 

By virtue of the averaging, L is an integral 
for Eq. 4. Thus, above each point in the 
portion of the plane (H,L) where L > 0 and 
0 5 IHl 5 L, the phase space of the aver- 
aged main problem constitutes a two-di- 
mensional manifold-the sphere (7) 

in the three-dimensional real space defined 
by the coordinates 

5, = LGse cos g 

52 = LGse sin g 

For convenience, we refer to the great circle 
53 = 0 as the equator of Eq. 12, and to the 
points [0,0, + % ( L ~  - H~)],  as the north 
pole and the south pole, respectively. The 
argument of perigee g serves as longitude 
over Eq. 12, whereas G measures essentially 
the height above the equatorial plane 
53 = 0. One learns quickly to interpret geo- 
metric curves on the sphere defined by Eq. 
12 as orbits of the averaged system Eq. 4. 
For instance, the point where G attains its 
maximum value L, that is, the north pole of 
Eq. 12, represents the instantaneous circular 
orbit of radius a in a plane at an angle 
I = arccos H/L over the equator of the 
earth; likewise, being the point at which G 
reaches its minimum value H, the south pole 

Fig. 1. The phase flow after the second pitchfork 
bifurcation. A view of the northern cap. 

stands for an ellipse with eccentricity 
(1 - H ~ I L ~ )  * in the equatorial plane of the 
earth. 

Because the orbits of the averaged main 
problem are the level curves of Eq. 4, we get 
a picture of the phase flow for X by drawing 
these level curves for H running over the 
interval 0 5 H I L. Now we can think of 
three methods for drawing the level curves 
of X over Eq. 12: method 1, integrating 
numerically the differential equations 

t i  = (ti,%) for i = 1,2,3 (14) 

the right-hand member designating the 
Poisson bracket of ( with the Hamiltonian 
X; method 2, for a given set of values (C, H, 
L) solving numerically the system made of 
Eq. 12 and of equation X = C, and method 
3, "painting" X over the sphere. 

In method 3, an orthographic projection 
establishes a 1- 1 correspondence 

between pixels within a disk (A) on the 
screen and the points on a hemisphere of 
Eq. 12. The points at which G is zero being 
excluded, the averaged Hamiltonian X is 
bounded over the sphere. Hence, the values 

m = min X[IT(U,V)] 
(u.v)d 

M = max X[~(u,v)] 
( u . ~ ) d  

are finite, and we can set a 1- 1 mapping y of 
the real interval [ m , q  onto a "rainbow" of 
colors. By "painting" X over the sphere we 
mean to attach to each pixel (u,v) in A the 
corresponding color code y{X[II(u,v)]). 
That is, the Hamiltonian is computed for 
each point in phase space corresponding to a 
point plotted in the projection, and a color 
is assigned with the assignment based on the 
interval in which this value falls. In this 
manner, the level curves of X on the sphere 
are represented within A by contiguous pix- 
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els having the same color code. 
We have used methods 1 and 2; they 

proved intolerably long, especially in areas 
crowded with stable and unstable equilibria. 
In a related calculation performed by the 
authors, one integration took 3 days on a 
workstation-class serial computer with a 
floating-point accelerator. By contrast, the 
third method turned out to be most effective 
for seeing level curves; on a parallel machine 
it takes on the order of a second. 

This simple minded scheme fails to pro- 
vide enough resolution to enhance fine de- 
tails in the phase flow. It is not sensitive 
enough, for instance, to locate a shallow 
minimum at the foot of a steep maximum. 
Nevertheless, there are techniques to reme- 
dy these difficulties. First, color bin bound- 
aries are assigned nonlinearly so that the 
range of values displayed as a single color is 
determined by the relative frequency of 
those values. For example, one color band 
might represent Hamiltonian values be- 
tween 0.0 and 0.01, while another repre- 
sents values between 1,000 and 10,000, if 
those ranges contain equal numbers of 
points. Second, several spectra may be tra- 
versed in assigning colors. After all, we are 
not interested in reading values of gl off the 
screen. Figuring global phase flows from 
patterns of color contrast is all that is neces- 
sary- 

The procedure requires calculating SI at 
hundreds of thousands of points and rank- 
ing these values. This computation is natu- 
rally data-parallel, because the Hamiltonian 
is calculated independently at each point. 
Massively parallel processors now available 
complete the task in a matter of seconds for 
an image of 512 by 512 pixels; by contrast, 
it takes about 3 hours for a serial Lisp 
workstation to complete the same task. 
Speed is a decisive advantage when we draw 
on this "painting" technique to study the 

Fig. 2. A surprising bifurcation at E2. A zoom 
into the cover picnue. 

bifurcation diagram for dynamical systems 
dependent on one or more parameters. We 
let the parameters sweep through intervals 
where we expect a discontinuity in the evo- 
lution; for each selection of the parameters, 
we paint the corresponding Hamiltonian. 
Comparing successive paintings reveals 
points in the parameter space where bifurca- 
tions occur and provides clues as to their 
origin. 

In the main problem of d c i a l  satellite 
theory, astronomers and aerospace engi- 
neers want to know how the phase flow of 
the averaged problem evolves as the ratio 
H/L decreases from 1 (circular orbits in the 
equatorial plane of the earth) to 0 (orbits 
residing in a plane passing through the polar 
axis of the earth). 

Because L is an integral after averaging, it 
is readily seen that the canonical equations 
derived from Eq. 4 are equivalent to the 
equations 

dg ax* d~ ax* - -  - = - -  
dt* aG ' dt* ag (17) 

derived from the Hamiltonian 

The independent variable t is replaced by the 
long time scale t* such that dt = J2 dt*. The 
equilibria in the main problem are the roots 
of the system 

ax* --  ax* 
aG 

- 0 , - = o  
ag 

(19) 

This system, however, suffers from singular- 
ities at G = L (the north pole) and G = H 
(the south pole); in the neighborhood of 
these points, it should be replaced by the 
system 

" = (ti,x*) for i = 12,3 (20) dt* 

At any point in the interval 0 I H I L, 
system Eq. 20 admits two roots: Eo at the 
north pole of the sphere Eq. 12 and Et at the 
south pole. For all values H/L, the character- 
istic exponents at Et are imaginary, hence 
the equilibrium Et is stable. As for Eo, 
however, it changes stabili twice in the 
neighborhood of H = Ll 2 5. Solving the 
system Eq. 19 in that neighborhood to the 
first power of J2 reveals two discontinuities. 

1) A pitchfork bifurcation occurs at 

The north pole becomes unstable while two 
stable equilibria, E l k  = 0, G = G1,3) and 
E3(g = IT, G = appear on each side of 
it with 

(22) 
2) A second pitchfork bihrcation occurs 

at 

At that inclination, Eo reverts to stability by 
giving rise to two unstable equilibria, E2(g 
= a/2, G = G2,4) and E4(g = -1~12, G - 
G2,4) with 

Figure 1 is a painting of the phase flow 
made at a value of H/L slightly below that of 
the second bifurcation. It is a view of the 
northern cap, not of the entire hemisphere, 
in an orthographic projection from the 
north pole along the 53 axis. The t1 axis goes 
from left to right, the t2 axis points upward 
in the vertical direction. 

Most recently, by solving numerically sys- 
tem Eq. 19, Healy found that, for H/L 
< 0.031 (with J2 = 0.001), there appear 
two more roots for G at g = 0 and g = al2. 
They arise as saddle node bihrcations out of 
a smooth landscape of circulatory flow. 
There are two pairs of equilibria, one stable 
E5, the other unstable E6, located on the 
positive t1 axis. These equilibria are mir- 
rored by symmetric images (E7, E8) on the 
negative t1 axis. Without the color picture 
on the cover it would have been very diffi- 
cult to decipher the pattern of flow around 
these equilibria because they occur in very 
shallow areas. The cover picture is an ortho- 
graphic projection of the south pole after 
the third pitchfork bifurcation. It shows the 
discovery of two pairs of saddle node equi- 
libria appearing as eyeballs along the ti axis. 
The stable equilibrium Et occupies the cen- 
ter; on both sides, one finds first the stable 
equilibria El and E3. Farther away from the 
center appear the stable equilibria E5 and E7, 
and then the unstable equilibria E6 and E8. 
Incidentally, these discoveries stand in con- 
tradiction to arguments (8) against the exis- 
tence of equilibria other than the classical 
ones at (Ei)OSiS4 and Et. 

Visual inspection of the painted flow dia- 
grams produced a surprise at the equilibria 
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EZ and E4. Originally thought to be unsta- 
ble, E2 and E4 appeared unexpectedly as 
stable points escorted by two unstable equi- 
libria, one on either side of the originals, as 
seen in Fig. 2. Once again, the ratio HIL 
passes through a pitchfork bifurcation mak- 
ing E2 and E4 stable while spawning pairs of 
unstable equilibria. M e r  the fact, we found 
the mathematical explanation. Eliminating 
G from Eq. 19 produces a quadratic equa- 
tion in sing. Previous analysis restricted g to 
be a multiple of 7r/2 to ease the algebraic 
complexities. Not until the ratio H/L be- 
comes very small does the discriminant of 
the equation in sin g become positive, pro- 
viding for real roots and new equilibria. 

We have now come full circle. Analytical 
study of a dynarnical system prompted 
graphical representations to support our re- 
sults. Improvements in the visualization 
techniques revealed new phenomena, which 
brought us to refine our mathematical analy- 
sis. 
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Activin-Binding Protein from Rat Ovary Is Follistatin 

'Activin, a member of the transforming growth factor P protein family, was originally 
isolated from gonadal fluids and stimulates the release of pituitary follicle-stimulating 
hormone (FSH). Activin has numerous functions in both normal and neoplastic cells. 
Various cells synthesize activin and have a specific binding site for this peptide. 
However, the molecular basis for its actions is unknown. A binding protein for activin 
was purilied from rat ovary and was identical to follistatin, a specific inhibitor of FSH 
release. It is likely that the binding protein participates in the diverse regulatory actions 
of activin. 

S EVERAL HYPOPHYSIOTROPIC PRO- 

teins that can suppress or enhance 
follicle-stimulating hormone (FSH) 

secretion by pituitary cells have been identi- 
fied from mahnalian gonads. These include 
inhibin (1) and follistatin (2), which inhibit 
FSH release, and activin (3), which stimu- 
lates FSH release. Thev have uotential roles 
in reproduction and their structures have 
been elucidated by protein chemistry and 
cDNA cloning techniques (4, 5). 

Activin is a member of the transforming 
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growth factor P (TGF-P) gene family and 
mav have a varietv of similar functions. 
Activin acts outside the reproductive system 
as erythroid differentiation factor (EDF). 
Although EDF was initially isolated from a 
human leukemia cell line as a protein factor 
that causes differentiation of erythroid pro- 
genitor cells (6 ) ,  protein chemistry -and 
cDNA cloning analyses of the factor proved 
that EDF is the same molecular species as 
activin (7). Activin fEDF) has diverse bio- 

\ r 

logical roles: modulation of follicular granu- 
losa cell differentiation (4, regulation of - 
erythropoiesis (9) ,  stimulation of insulin 
secretion by rat pancreatic islets (lo), and 
modulation of several types of anterior pitu- 
itary cells (11). Specific binding sites for 
activin on rat granulosa cell (12) and human 
and murine erythroleukemia cells (13) have 
been identified; activin binding may be re- 
sponsible for its biological activities. Never- 
theless, regulation of the multiple functions 

of activin remains obscure. 
During our purification of activin recep- 

tors we noticed binding proteins for activin 
in rat ovary homogenates. We therefore 

Flg. 1. SDS-PAGE of purified activin-binding 
protein under nonreducing (lane 1) and reducing 
(lane 2) conditions. The ovaries (188 ovaries: wet 
weight, 21 g) were homogenized in 200 ml of 
Buffer A [20 mM tris-HCI (pH 7.2) with 150 
mM NaCI, 5 mM benzamidine-HCI, 1 mM phen- 
ylmethylsulfonyl fluoride, 1 mM N-ethylmalei- 
mide, 2 mM diisopropylfluorophosphate, 2 mM 
EDTA, and 20% glycerol] with a Polytron ho- 
mogenizer. The homogenate was centrifuged; the 
resulting supernatant was added to an equal vol- 
ume of Buffer A (with 25% polyethylene glycol 
6000 instead of 20% glycerol), stirred for 30 min 
at P C ,  centrifuged, and the supernatant decanted. 
The pellet was suspended in Buffer A with Triton 
X-100 at a final concentration of 2%, stirred, and 
centrifuged. The supernatant was mixed with the 
activin-Af6-Gel 10 [5 mg of recombinant activin 
(EDF) (21) was coupled to 5 ml Af6-Gel 10 (Bio- 
Rad)] and incubated overnight with a gentle 
stirring at 4°C. The gel was first washed with 
0.1% Triton X-100 in BufFer A and then with 
0.1% Triton X-100 in 50 mM sodium acetate 
buffer (pH 4.0), resuspended in 0.1% Triton X- 
100 in Buffer A, and poured into a column. 
Activin-binding protein was eluted with Buffer B 
(BufFer A with 2M guanidine-HCI and 0.1% 
Triton X-100). The active fractions desalted by a 
Bio-Gel P-10 column were applied to an activin- 
Af6-Gel 10 column, and the column was washed 
with 0.1% Triton X-100 in Buffer A. The activin- 
binding protein was eluted with Buffer B. Active 
fractions were desalted using a Bio-Gel P-10 
column equilibrated with 0.001% SDS. SDS- 
PAGE of the preparation was done in 12.5% gels 
and proteins were stained with Coomassie bril- 
liant blue (22). Bands a to d identify activin- 
binding protein. 




