
Neuroscience Models the Brain  
Ajer  many halting inititial steps, mathematical simulations of brdin_f;vlnctions have come close 
enough to reality that they are now a power41 guide to experimentation 

HOWDRAMATICAL-

LY THINGS CAN 

CHANGE in neuro-
science! A decade 
ago a computer sci- 
entist who ap-
proached a neurobi- 
ologist with a new 
model of how the 

Third in a sevies brain works was 
likely to get a shrug-or perhaps something 
less polite. To those studying the biological 
circuitry of living nervous systems, abstract 
conceptions of how those circuits might 
work seemed to bear little relation to reality. 

Today a computer scientist offering a 
model of the brain is likely to be received 
warmly, particularly if the model can make 
testable predictions about the behavior of 
nervous systems. Furthermore, neurobiolo- 
gists are sharpening up their own computer 
skills to get into the game themselves. In- 
deed, the marriage of computational models 
and experimentation promises to be a key 
trend in neuroscience in the 1990s. 

It should not be assumed that modeling is 
on the verge of unlocking the brain's myster- 
ies. In fact, so far computer models have not 
brought any major revelations about how 
the brain works. But they have begun to 
help researchers chisel away at some un-
solved questions, such as how neural activity 
shapes brain development and how specific 
groups of neurons process information. The 
optimistic view is that such modeling will 
pick up steam, and as more is learned about 
the nervous system, increasingly sophisticat- 
ed models will be created, bringing into 
reach larger questions-how we learn a lan- 
guage, for example, or how we recognize 
faces. 

This interest in computational approaches 
is not surprising. Neuroscientists are quick 
to snatch up any new trick that may shed 
light on the workings of the brain. Tech- 
niques and tools such as monoclonal anti- 
bodies, recombinant DNA, and patch 
clamping (a method of recording ion flow 
through single channels in cell membranes) 
were eagerly and quickly adopted by the 
neuroscience community. But many experi- 
mental neuroscientists have been slow to 
accept the notion that computation and 

modeling have something tangible to offer. models to identify key parameters and point 
Part of the reason for the skepticism is the way to experiments comes from work by 

that neuroscientists remember previous Michael Stryker of the University of Califor- 
models that didn't live up to their billing. nia at San Francisco. Stryker used modeling 
For instance, computer simulations devised to analyze the factors that influence the 
in the 1970s as models of how neural activi- formation of ocular dominance columns, 
ty influences the development of the visual patches of nerve cells in the visual cortex that 
cortex came under criticism for simply de- respond to signals from only one eye. In a 
scribing what was known rather than mak- newborn animal, the columns don't exist; all 
ing predictions that could be tested in ex- cells in the region receive impulses from 
periments. Such experiences made those both eyes. But in each small patch of cortex 
who study the brain leery of the idea that the connections from one eye gradually 
computer models could be anything more weaken while those from the other eye 
than high-tech simulations of the obvious or strengthen, yielding a pattern of patches of 
elaborate but possibly uninformed guesses cells that serve one eye or the other. 
about how the brain might work. Stryker h e w  that the development of 

What has changed? One difference is the ocular dominance columns was probably 
increasing sophistication of computer mod- influenced by the extent of branching of the 
eling techniques. That sophistication, cou- neurons coming into the cortex, the correla- 
pled with the growing power of the com- tion of their firing patterns, and the inhibi- 
puters that are available to every lab scien- tory or excitatory interplay of neurons in the 
tist, has brought greater modeling power area of the cortex where the columns are 
close to hand. Another equally important forming. What he didn't h o w  was which of 
factor is the rapid increase in howledge of those three variables was most important. 
the biology of the nervous system-often Then Kenneth Miller joined Stryker's lab 
without a suitable theoretical framework in as a graduate student and decided to tackle 
which to understand it. the problem by modeling. With the help of 

"The problem is that we're just awash in Stanford mathematician Joseph Keller, 
data," says Allen Selverston of the Universi- Miller, previously trained in theoretical 
ty of California at San Diego. "But how physics, devised a model consisting of a 
much of that is important for the operation series of equations that predicts the relative 
of the system and how much isn't impor- influence of the three factors. Solution of 
tant? If you want to know how a car works, the equations indicated that interactions in 
you don't have to analyze the paint pigments the cortex would be the dominant influence, 
on the body. We ha\~e to start to h o w  what a hypothesis Stryker and Miller are now 
are the important parameters. Modeling is testing experimentally. 
one way to try to do that." An essential element of this work, accord- 

And once those parameters are identified, ing to Stryker, was cooperation between a 
models can point the way to experimenta- neurophysiologist, a mathematician, and a 
tion, according to Terrence Sejnowski of the student trained in both areas. Such students 
Salk Institute. "Models won't solve prob- are the leading edge of the next wave of 
lems by themselves," notes Sejnowski, who neuroscientists, says Max Cynader, a neuro- 
has been a leader in bringing computer physiologist at the University of British 
scientists together with neurobiologists. Columbia, who has had a fruitful collabora- 
"You still have to do experiments. But hav- tion with Steven Zucker, who specializes in 
ing a model greatly amplifies your intu- computational vision at McGill University, 
ition. . . . Doing an experiment is often very and Allan Dobbins, a graduate student with 
difficult; it's critically important that you Zucker. The work was greatly enhanced by 
pick ones that are going to give you the Dobbins, whom Cynader describes as "one 
maximum payoff. A model lets you play of those people of the future: both a neuro- 
with a lot of different experiments in a biologist and an engineer-and a computa- 
reduced, simpler form." I tional wizard as well." 

An excellent example of the power of The group decided to take a computation- 



Separate but equal. Computer simulation by Michael Stryker modelsformation of ocular dominance 
columns. Patches ofvisual cortex initially respond to signalsjom either eye (blue) but later respond only 
to signalsjom leji eye (red) or right eye (green). 

al approach to the problem of how the brain 
uses cues from shading generated when light 
falls on a curved surface to perceive the 
curvature of objects. This capacity is likely to 
be a key to how we see in three dimensions 
and distinguish objects-and no one had 
identified the cells that are responsible. 

As a first step, Cynader, Zucker, and 
Dobbins formulated a model to address the 
two-dimensional problem of detecting 
curved lines. The model was based on an 
analysis of the computations the brain 
would have to make to determine whether a 
line is curved. It predicted that the process 
requires several cell types, including cells 
that specifically respond to straight bars of 
different lengths. 

Such cells were already known, Cynader 
says. They had been named "end-stopped" 
cells, because of their presumed hnction in 
end point detection. But no one had shown 
that end-stopped cells sense curvature. Di- 
rected by the model's prediction, Dobbins 
conducted experiments in cats and found 
that the cells indeed respond when the eye is 
trained on curved lines. They are now revis- 

ing the model to address the problem in 
three dimensions. 

Both Stryker's and Cynader's models hew 
closely to the physiology of their respective 
biological systems. And that is no accident: 
in each case parameters of the model were 
derived directly from the physiological char- 
acteristics of the cells. Many neuroscientists 
argue that if computational models are to be 
taken seriously as reflections of what's going 
on in the brain, such a direct relation is vital. 
But a different approach, using computer- 
simulated networks of neurons, which also 
shows promise for making experimental pre- 
dictions, has been criticized for being insuf- 
ficiently rooted in physiology. 

Neural networks have a long history, al- 
though they have only recently achieved 
acceptance in the general neuroscience com- 
munity. During the 1950s and 1960s there 
was a flurry of excitement over computer- 
simulated neural nets that could learn to 
recognize patterns by adjusting the strength 
of the connections between individual units 
in the network. The excitement died when 
the nets proved to be quite limited in what 

they could learn. 
In 1983, Sejnowski, then at Johns Hop- 

kins University, and Geoffrey Hinton, then 
at Carnegie-Mellon University, introduced 
the three-layer neural net, which was a vast 
improvement on its predecessors. In the 
three-layer net a middle layer of units con- 
nects the input and output layers. When the 
net is given an input, it sends signals 
through the hidden layer to produce an 
output. That output is checked against the 
"correct" output, and a learning algorithm is 
used to reduce error by strengthening or 
weakening connections in the net. 

The great advance in this form of neural 
net was the middle layer, often referred to as 
"hidden," because its state is not apparent 
from an examination of the input or the 
output. But the collective activity of the 
hidden layer determines the output of the 
entire network. The most important proper- 
ty of the hidden layer is that it tends to 
distribute tasks: the computation is shared 
by many units rather than being delegated 
to only one. After the network has been 
"trained" to do a job, the hidden layer 
retains the record of how the network dis- 
tributed the task in the process. 

The three-layer neural net drew consider- 
able attention in 1987 when Sejnowski used 
an improved learning algorithm, called 
back-propagation of errors (back-prop for 
short), to develop a program called NET- 
talk, which can learn overnight to convert 
written text to recognizable spoken speech. 
But while NETtalk pointed out the com- 
mercial potential of neural nets in "smart" 
machines, many neuroscientists remained 
doubtful that such networks could advance 
understanding of the nervous system. 

I One reason for their caution is the fact 
that the brain is unlikely to use a learning 
method like back-prop. "Alas, the back-prop 
nets are unrealistic in almost every respect," 
wrote Francis Crick in the 12 January 1989 
issue of Nature. Crick has warned repeatedly 
against taking such models too literally. He 
points out that taking back-propagation at 
face value would require that individual 
neurons have the ability to both excite and 
inhibit their neighbors and be able to trans- 
mit impulses in the backward as well as 
forward direction-both distinctly unphy- 
siological characteristics. 

But physiologically faithfid or not, neural 
nets have made some excellent predictions 
about how neurons behave. One success 
story comes from the lab of Richard Ander- 
sen at Massachusetts Institute of Technolo- 
gy. Andersen and other researchers had 
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spent years recording from cells in the brains 
of monkeys, trying to find the neurons 
responsible for computing the location of an 
object in space. The monkeys were trained 
to keep their eyes fixed on one point while 
an object appeared elsewhere in their visual 
space. By then directing the monkey's gaze 
to different spots, the experimenters could 
move the image of the object to different 
parts of the monkey's retina, although the 
object itself remained at the same point in 
space. 

Even though the image falls on different 
parts of the retina, the monkey knows that 
the position of the object has not actually 
changed. The researchers were looking for 
neurons that keep track of the object's "true" 
position by firing only when a specific com- 
bination of image position on the retina and 
eye rotation corresponded to that particular 
point in space. 

What they found was a population of cells 
that seemed to divide the labor in an unex- 
pected way. No cells responded simply to a 
position in space. Rather, groups of cells 
would respond only to stimulation of specif- 
ic parts of the retina and then only if the eye 
was in a certain position. The upshot of this 
was that no position in space was uniquely 
covered by any one group of neurons. "One 
place in space was covered by a number of 
groups of cells," says Andersen. 

Given this overlap, it wasn't intuitively 
obvious that these cells could be doing the 
job of localization. Andersen and his collab- 
orator David Zipser, of the University of 
California, San Diego, turned to a neural net 
to expand their intuition. They trained the 
net to locate an object on the basis of retina 
and eye position, then examined the hidden 
layer to see how the units there responded to 
various combinations of positions. What 
they found was the same kind of distribu- 
tion they had seen when recording from 
nerve cells. 

Andersen points out that their result does 
not prove that the cells they identified are 
actually performing the location task; it only 
shows that they could be. But the more tests 
the model passes, the stronger the case for it 
becomes. The next step is to add another 
variable the brain must deal with-head 
position. 'The model makes some very pow- 
erful predictions about what you should 
find in the recordings," Andersen says. His 
laboratory is now conducting experiments 
with monkeys to see if the cells handle 
changes in head position as the model sug- 
gests they do. 

Many other workers are also finding neu- 

ral nets helpful in simplifying analysis of 
complex data. Thomas Anastasio, now at 
the University of Southern California, and 
David Robinson, of Johns Hopkins Univer- 
sity, used a neural network to help deter- 
mine how the brain combines visual infor- 
mation with head position cues from the 
inner ear to control three kinds of eye 
movement: the vestibule-ocular reflex, 
which keeps your eyes focused on an object 
as you turn your head; the smooth pursuit 
response, by which your eye follows a mov- 
ing object; and the saccadic response, in 
which the eye jumps suddenly to a different 
part of the visual space. 

Recording from the vestibular nucleus of 
the monkey, the brain center where such 
movements are computed, Anastasio (then a 
postdoc with Robinson) found that most of 
the cells did not fire during just one type of 
eye movement, but instead were active to 
varying degrees during all three. As in the 
case of the locational task, the computing 
responsibility seemed to be distributed in a 
way that was not obvious, but a neural 
network trained to compute eye movements 
showed a remarkably similar distribution. 

Anastasio and Andersen both say the val- 
ue of the computer simulations was that, by 

Master mingler. Terrence Sejnowski has 
brought togethw computer scientists and biologists. 

making sense of cellular recordings, they 
provided a reasonable hypothesis about how 
neurons are actually doing certain complex 
processing tasks. But while the models pro- 
vided the springboard for an important con- 
ceptual leap, they left another question 
open: Even if a neural net tells us how brain 
cells share the responsibility for a certain 
task, does it say anything about how the 
cells actually assume that form of distributed 
activity? 

This may be the most controversial ele- 
ment of neural net modeling. Neuroscien- 

tists agree that the brain is unlikely to use 
the precise survey and adjustment of connec- 
tions required by the learning algorithm of 
back-propagation. But one can't ignore the 
fact that neural net models do a good job of 
mimicking some brain functions. How can 
this be explained? 

Some researchers believe the brain may 
use a biological correlate of back-propan 
analogous means of reducing error by alter- 
ing the strength of neural connections. For 
example, Robinson points out that the vesti- 
bulo-ocular reflex, which remains able to 
adapt and change into adulthood, contains 
neurons that are perfect candidates for a 
means of relaying information about error. 
The neurons he is referring to fire in re- 
sponse to retinal slip-the movement of an 
image across the retina that occurs when the 
eye does not accurately track an object. The 
neurons send their signals back to the vestib- 
ular nucleus where they could be acting to 
improve the accuracy of the eye movement, 
in effect implementing a learning algorithm 
that is more biological than back-prop, but 
has a similar outcome. 

The next step in the refinement of neural 
net models, and other computational mod- 
els of brain function, is to use information 
gathered from physiological systems to 
bring the models closer to biological reality. 
Already researchers are customizing the con- 
nections in their neural nets to match the 
neural connections in the systems they 
study. And others are replacing back-prop 
with learning algorithms that can work 
through separate neural pathways-creating 
feedback systems like the ones frequently 
found in the brain. Such systems are not 
only "more physiological," they also allow 
the neural networks to do at least one 
important brain-like thing: create a pattern 
of output that changes over time. 

As neuroscience enters the 1990s, an im- 
portant dialectic between model and experi- 
ment is becoming clear. Computational 
models have become powerful enough to ...- .. 

make specific predictiohs-that are far-from 
intuitively obvious-about how systems of 
neurons do their jobs. In turn, what is 
known about the physiology of brain cells is 
being used to modify the models and bring 
them into closer conformation with biologi- 
cal reality. As the models become more 
physiologically based, they will be able to 
make even stronger predictions. If this inter- 
action is only in its infancy, and it has not 
yet produced revelations, it seems clear that 
in the next decade it will begin to do so. 
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