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and neocortex. The pontine and control 
explants were positioned on the flanks of the 
cortical explants at a spacing of 150 to 300 
pm, a distance roughly equivalent to that 
separating corticospinal axons from the basi- 
lar pons in vivo (3). The cultures were 
incubated for 24 to 48 hours and examined 
with phase-contrast optics and by fluores- 
cence microscopy after dye injections into 
the explants. 

The pontine target tissue elicits an in- 
crease in the number of axons emerging 
from the proximal face of both motor and 
visual cortical explants when compared with 
controls (Figs. 1 and 2). This greater out- 
growth could be due either to a trophic 
effect of the pons, which would increase the 
survival or enhance the axonal growth of 
cortical neurons that lie on the proximal side 
of the explant, or to the directed growth of 
cortical axons or axon collaterals toward the 

pons, that is, a tropic &. That &is en- 
hanced neurite outgrowth is due to direc- 
tional growth (a tropic effect) is, however, 
indicated by further observations of axons in 
the collagen matrix. First, substantially more 
cortical axons grow directly toward the pon- 
tine explants than toward control explants 
(2564 axons scored; pontine intercept coef- 
ficient, 0.79; see Fig. 1D for determina- 
tion), and second, axons that would have 
missed the pontine explant ifthey had main- 
tained their initial trajectory turn preferen- 
tially toward it (593 axons scored; pontine 
turning coefficient, 0.96; see Fig. 1D for 
determination). 

The behavior of axons within the cortical 
explants was visualized by injecting pontine 
(n = 97) and control (n = 53) explants in 
24- to 48-hour cocultures with the fluores- 
cent axon tracer, 1,l-dioctadecyl-3,3,3',3'- 
tetramethyl indocarbocyanine perchlorate 

(DiI, Molecular Probes) (8). Retrograde 
filling of cortical axons contacting the pon- 
tine explant reveals that they grow by one of 
two means. Somaprimary axons turn from 
their initial ventricular-directed course to 
emerge on the lateral, pons-facing surface of 
the explant (Fig. 3A). Many primary axons, 
though, maintain their original trajectory 
toward the ventricular surface but give off 
collaterals, which grow laterally toward and 
into the pontine explant (Fig. 3, B to E). 
The cell bodies of axons and collaterals 
retrogradely labeled from the pontine ex- 
plant are distributed across the width of the 
cortical explant (Fig. 3, D and E) giving 
further indication that the observed effect is 
not due to an enhanced viability of cortical 
neurons that lie on the side facing the 
pontine explant, but rather is due to a tropic 
influence. Most of these cell bodies are 
found at a position within the cortical ex- 

Rg. 1. Phase-contrast images of cortical axon 
growth in three-dimensional collagen matrices. 
(A) Motor c o r n  cultured alone for 24 hours. 
Most axon growth is directed inferiorly from the 
venmcular surface of the explant (pial surface is to 
the top). (B) Motor cortex cultured for 24 hours 
with control tissue (c) to the left and basilar pons 
(p) to the right. Cortical axon growth is predomi- 
nant on the side facing the pons. Further, most 
conical axons on this side are directed laterally 
toward the pons, whereas those on the control 
side maintain their inferior direction of growth. 
(C) Higher maplication of cortical axons turn- 
ing within the collagen matrix to grow toward the 
pontine explant (located out of the field to the 
upper right). Examples are indicated with arrows. 
Scale bar, 200 pm in (A) and (B); 400 pm in (C). 
(D) Method for quantifying directional growth of 
cortical axons. Data are from a consecutive series 
of motor cortex cocultures (n = 122) of the type 
shown in (B). Cortical axons were scored as 
intercepting iftheir trajectory d !  them toward 
the pons or control tissue explants (axons a). 
Turning axons are those that have an initial 
trajectory when exiting the cortical explant that 
would miss the pontine or control tissue explants, 
but is subsequently turned >30 degrees toward 
either target explant (axons b). Cortical axons 
were counted only if their growth cones were 
visible in the areas d e h d  by the dotted lines. 
These areas are displaced 50 pm from the sides of 
the cortical explant. CTX, cortical explant; C, 
control tissue explant; P, basilar pons explant. The 
pontine intercept coefficient was calculated by 
dividing the number of axons intercepting the 
pontine explant by the total number of axons 
intercepting the pontine and control tissue ex- 
plants. Thus, if all "intercepting" axons are direct- 
ed toward the pontine explant, the coefficient 
would be 1; if all would intercept the control 
tissue explant, the coefficient would be 0. The 
pontine turning coefficient was calculated in a 
similar manner. Thus, if all "turning" axons turn 
toward the pontine explant, the coefficient would 
be 1; if all turn toward the control tissue explant, 
the coefficient would be 0. 
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Fig. 2. Preference of cottical axon growth. For 
each type of d t u r e  (indicated beneath the 
histogram), the bars indicate the percentage of 
cortical explants (MC, motor cortex; VC, visual 
cortex) with axon growth predominantly from the 
side facing the pontine explant (PS, cross-hatched 
bars) or the control tissue explant (CS, filled 
bars). No differences were observed between the 
control tissues used, and they are displayed as a 
singk group. Example of abbreviation of d- 
ture type: C-MC-P = an explant of motor cortex 
with a control tissue explant (C) on one side and a 
pontine explant (P) on the other. 

plant that corresponds to the layer 5 distri- 
.bution of corticospinal-corticopontine neu- 
rdns (9) (Fig. 3, D to F). This observation 
suggests that the chemotropic effect may be 
specific for the dass of cortical neuron that 
innervates the basilar pons in vivo. D I  
injections into control explants reveal that 
few cortical axons make contact and provide 
little indication of collateral branching. 
Thus, axon labeling substantiates and ex- 

tends the inferences drawn from phase-con- 
trast observations. Not only does the pon- 
tine explant affect the directional growth of 
cortical axons, but it can affect at a distance 
the extension and directed growth of axon 
collaterals. These results suggest that at the 
appropriate time in development the basilar 
pons releases a diffusible molecule that elicits 
budding and directed growth of corticopon- 
tine collaterals, either by direct action on the 
parent axons or by conditioning the inter- 
vening matrices, neural or collagenous. 

We suggest that in vivo the corticopon- 
tine projection forms by a two-stage pro- 
cess. First, the primary axons of a subset of 
layer 5 neurons grow down a defined path- 
way that leads them past the pons and into 
the spinal cord, likely as a response of their 
growth cones to local cues associated with 
the axon tract. Second, the basilar pons, 
coincident with its maturation (lo), induces 
and attracts axon collateral branches 
through the release of a diffusible molecule. 
Our in vitro findings support such a chemo- 
tropic mechanism and suggest that the loca- 
tion of collateral budding is governed by the 
basilar pons rather than by a length or 
timing program intrinsic to the comcospinal 
axons or by the development of local cues 

Fig. 3. Fluorescence images of axon turning and branching in cortical explants. (A through E) Motor 
cortex cocultured with control tissue to the left and basilar pons to the right as in Fig. 1B; only the 
cortical explant is in the field of view. After aldehyde fixation, Did was injected into the pontine explant. 
In the examples illustrated, the pontinc explants were only partially filled with D I  to facilitate 
observations. Because of explant thickness, only some labeling is in focus at any focal plane; segments of 
labeled axons are not visible when well out of the focal plane. (A) F k d  at 48 hours. Many cortical 
axons retrogradely labeled with D I  turn within the cortical explant (trajectory marked with open 
arrowheads) to exit the side facing the pontine explant. Some retrogradely labeled parent cells are 
marked with arrowheads. (B and C) Different focal planes of another cortical explant 6xed at 24 hours. 
Many retrogradely labeled cortical axons contacting the pontinc explant are collateral branches; their 
path within the collagen matrix is delineated with open arrowheads. The branch points of two 
collaterals visible in the cortical explant are marked with arrows in (C). (D and E) Two digerent comcal 
explants fixed at 24 hours. Retrogradely labeled cell bodies in the cortical explants (some marked with 
arrowheads) appear to be in layer 5 [compare to (F)]. Again, many retrogradely labeled cortical neurons 
contact the pontine explant by collateral branches-some branch points visible in the wrtical explant are 
marked with arrows. (F) An explant of motor cortex taken 24 hours after rhodamine isothiocyanate was 
injected into the spinomedullary junction of a newborn rat to label retrogradely the band of 
corticospinal-corticopontine neurons in layer 5 (marked with arrowheads). Scale bar, 200 q in (A) 
through (F). 

within the comcospinal pathway. Collater- 
als directed to the pontine explant in our 
cocultures bud from axons at positions 
much more proximal to the cell body than 
those in vivo. Furthermore, our finding that 
primary axons can turn toward the pontine 
explant suggests that their growth cones are 
able to respond to the pontine attractant. 
The failure of the primary growth cones to 
respond in vivo may be due to the late 
maturation of the basilar pons (lo), to a 
preference for the axon tract, or possibly 
because they pass by the pons too rapidly to 

be adequately influenced. 
Our results suggest that a diffusible, che- 

motropic signal allows cortical axons to 
recognize the basilar pons as an appropriate 
target. Although chemotropism was first 
proposed by Cajal in the last century (1 I), 
the concept lost favor for want of support- 
ing evidence. However, there is now evi- 
dence that an exogenous source of nerve 
growth factor can act as a chemoattractant 
fbr sympathetic and sensory neurites (12), 
and, recently, natural chemoattractant activ- 
ity has been detected in developing periph- 
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eral and central neural systems (6, 13). The 
latter observations indicate a chemotropic 
effect of the maxillary process on trigeminal 
ganglion neurons in the mouse (6) and of 
the floor plate of the spinal cord on dorsolat- 
eral commissural neurons in the rat (13). In 
these studies, the crucial demonstration was 
that a peripheral target (6), or an intermedi- 
ary structure in a central axonal pathway 
(13), isolated in vitro could elicit oriented 
axonal outgrowth from specific types of 
neurons. Despite this long-awaited support 
for what is arguably a simple and effective 
mechanism for selective axon guidance (14), 
the prevailing view holds that a growth cone 
is guided by "signals encoded in the struc- 
tures with which it is in direct contact" (15). 
Here we provide further evidence for a 
target-derived influence acting at a distance 
on axon directionality, extend this mecha- 
nism to the developing brain, and report 
that the target can induce the remote forma- 
tion of axon branches. 

The corticopontine projection is a major 
efferent connection of the mammalian neo- 
cortex, yet it is established in an indirect 
fashion (3). Interestingly, this projection is 
formed and retained by most regions of 
neocortex (I), whereas the post-pontine seg- 
ment of the primary axon, which develops in 
a direct fashion, is subsequently lost by large 
regions of neocortex, including the primary 
visual and auditory areas (3, 4, 16). Our 

evidence that a signal derived from the 
pontine target can operate over a distance 
&d affect the elaboration of this projection 
suggests a crucial role for difisible mole- 
cules in the establishment of connections in 
the mammalian brain. 
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