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INFORMATION IN THE VISUAL SYSTEM, 

as in sensory systems in general, is pro­
cessed along several parallel channels. 

The geniculostriate system of the primate 
consists of two major pathways with distinct 
physiological properties, the color-oppo­
nent and the broad-band. These pathways 
remain segregated through several cortical 
stages and are believed to subserve different 
visual capacities (1). Because cells in the 
broad-band system do not respond selective­
ly to different wavelengths of light (2), it has 
been thought that this "color-blind" system 
becomes inactive at isoluminance, leaving 
only the color-opponent system functional 
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(3). On the basis of these ideas, Livingstone 
and Hubel proposed that those aspects of 
visual perception compromised at isolumi­
nance (4) are mediated by the broad-band 
system and that such experiments, therefore, 
could reveal what visual functions are car­
ried by each of these two channels (5, 6). To 
test this hypothesis directly, we set out to 
compare the perceptual deficits incurred in 
monkeys at isoluminance with the responses 
of single cells of the color-opponent and 
broad-band systems. 

We trained rhesus monkeys to detect or 
discriminate motion, stereoscopic depth, 
and texture differences in red-green stimuli 
of various luminance and color contrasts 
(Fig. 1). Choice of these three visual tasks 
was based on the assumption that the color-

Perceptual Deficits and the Activity of the Color-
Opponent and Broad-Band Pathways at Isoluminance 
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The deficits in texture, motion, and depth perception incurred in monkeys at 
isoluminance were compared with the responses of neurons of the color-opponent and 
broad-band systems in the lateral geniculate nucleus. Texture perception, assumed to 
be carried by the color-opponent system, and motion and depth perception, ascribed to 
the broad-band pathway, were all found tp be compromised but not abolished at 
isoluminance. Correspondingly, both the color-opponent and the broad-band systems 
were affected at isoluminance, but the activity of the neurons in neither system was 
abolished. These results suggest that impairment of visual capacities at isoluminance 
cannot be uniquely attributed to either of these systems and that isoluminant stimuli 
are inappropriate for the psychophysical isolation of these pathways. 
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Fig. 1. Color and luminance 
contrast of the stimuli. The 
color gratings were generat- 
ed by adding red (thin solid 
h e )  and green (thin dashed 
line) sinusoidal gratings 
180" out of phase. Color 
contrast (C) was defined as 
the ratio of the amplitude 
(d) of the color change 
along the red-green line of 
the CIE (Commission Inter- 
nationale de I'Eclairage) 
chromaticity diagram to the 
maximum change possible 

Color contrast between the red and green 
C=dlD ohos~hors iD) of our dis- 

L L \ ,  

play for a given luminance value represented by the overall size of th'e color triangle RGB (red, green, 
blue) (17). When the amplitude of the modulation of the red and green were equal as defined with 
standard psychophysical tests such as flicker photometry, the red-green gratings were isoluminant. 
Amplitudes of the red and green modulations different from those psychophysically defined as 
isoluminant resulted in a luminance modulation inchcated by the thick solid sinewave. For the color 
gratings, luminance contrast (L) was expressed as the difference between the two amplitudes of the red 
and green (Ramp, G,,,), divided by the mean luminances of the two wave forms (R ,,,,, G ,,,, ). For 
the depth, texture, motion- and flicker-detection tasks, luminance contrast was given as the logarithm of 
the red and green luminance ratio. 

opponent system processes high-resolution 
static form perception, texture perception 
being an example, and the broad-band sys- 
.tem processes motion perception and stere- 
opsis ( 6 ) .  The stimuli were presented on a 
calibrated and linearized color monitor with 
a raster display system (7). The animals' eye 
movements were tracked with the scleral- 
search coil technique (8). Data collection, 
stimulus presentation, and the animals' be- 
haviors were under computer control. The 
task was to fixate a small spot that appeared 
at the start of each trial, and then to locate a 
target that appeared randomly in one of 

four to eight locations peripheral to the 
fixation point. The monkey was rewarded 
for malung a single direct saccade to the 
target. Saccades to other locations aborted 
the trial. 

In the texture-discrimination task, the tar- 
get was a small square region of diagonal 
line segments (1) that appeared within a 
larger array of line segments of the opposite 
orientation (\). In the motion-detection 
task, the target was a small area of coherent- 
ly moving dots in a larger array of stationary 
random dots. For the depth-discrimination 
task, the monkey stereoscopically viewed 

log Luminance contrast 

Fig. 2. Stereoscopic depth, texture, and motion perception at isoluminance for one of the tested 
monkeys. (A) Percent correct performance (measured as the percentage of total trials for which the 
animal correctly located the target) on stereoscopic depth, texture, and motion perception at various 
luminance contrasts for s t i m d  of maximum color contrast. The width of the oriented h e s  in the 
texture discrimination task was 3.5 minutes of arc; the distance between them was 14 minutes of arc. 
Targets, presented 2" to 6" eccentric to the fovea, ranged in size from 0.33" to 2" of visual angle. Targets 
of similar size were used for the detection of stereoscopic depth, with disparities of 3.5 to 12 minutes of 
arc, and for motion detection, with velocities 6" and 12" per second. Dot size in the random-dot 
patterns was 12 to 18 minutes of arc diameter. (B) Stereoscopic depth perception at various luminance 
contrasts for four-color contrast values (0, 50, 75, and 100%). Increasing the color contrast improves 
the performance, as can be seen by comparing the curves. The shaded area in both plots shows the 
confidence limits for chance performance for significance at the 0.01 level (n = 170; low limit, 16.5%; 
high limit, 33.5%). 

Julesz-type (9) random-dot stereograms; the 
target was a small square in depth created by 
horizontally shifting a square area in one of 
the stereograms. Ip both cases the mean 
luminance of the display varied from 18 to 
27 cd per square meter. The isoluminance 
point of each subject was defined by flicker 
photometry. Four stimuli, each a 2 x 2 
degrees square patch, were presented on the 
monitor: three were yellow with slight vari- 
ations in hue and intensity and one was 
flickered at 15 Hz between red and green. 
The task was to identify the location of the 
fbckering stimulus, the position of which 
was randomized by trial. The particular red- 
green ratio at which discrimination fell to a 
minimum was the point at which the two 
colors were of equal luminance (isolumi- 
nant) to the subject (10). 

The performance of one monkey on the 
texture, motion, and depth tasks is shown in 
Fig. 2A. We obtained similar results from 
four other monkeys and from six human 
subjects tested with the same apparatus. The 
data show that the perception of texture, 
motion, and stereoscopic depth was im- 
paired at similar red-green luminance ratios 
for each task. Performance at zero lumi- 
nance contrast, however, was significantly 
better than chance for both motion and 
stereoscopic tasks. This suggests that color 
information can, to some extent at least, be 
used for processing the information re- 
quired by these tasks. 

To examine this question in more detail, 
we systematically varied color contrast from 
0 to 100% for each given luminance con- 
trast, which is shown for one animal for 
stereopsis in Fig. 2B; as color contrast was 
reduced, performance fell off. To ascertain 
that our results were not attributable to axial 
chromatic aberration of the eye, data for 
both human subjects and monkeys were 
collected with blurred stimuli, which, by 
eliminating sharp borders, minimize these 
factors (11). The data obtained under such 
conditions also indicate improved perform- 
ance with increasing color contrast. Thus 
color cues, although less effective than are 
luminance cues, can indeed be used for the 
perception of texture, motion, and stereo- 
scopic depth perception as also suggested by 
recent psychophysical studies on humans 
(12, 13). 

We next examined the responses of single 
cells in the parvocellular and magnocellular 
portions of the lateral geniculate nucleus to 
which the retinal color-opponent and 
broad-band cells project, respectively. Six 
animals were used, one of which also served 
in the behavioral experiments. The stimuli, 
presented with the same or with a similar 
system, were spots of various sizes flickering 
between red and green or moving red-green 
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sinusoidal gratings of low spatial frequency. 
The stimuli were centered on the receptive 
field of each cell. A range of temporal fre- 
quencies and of luminance and color con- 
trasts were examined. For each cell, the 
luminance of one color was systematically 
varied within a range of k0.8 log units 
around the behaviorailv established isolumi- 
nance point to determine the contrast that 
minimized each cell's activity. The responses 
of two parvocellular cells are shown-in the 
first two columns in Fig. 3. The first became 
unresponsive at zero luminance contrast. 
The second cell, which was highly wave- 
length-selective, continued td respond 
throughout the contrast range. The third 
column shows the responses of a typical 
magnocellular cell. This cell was not silenced 
at &y luminance contrast. At its best bal- 
ance point (0.2 log units from the isolumi- 
nance point), the cell responded equally to 
both phases of the red-green light exchange. 
The fourth column shows multiple unit 
recordings from five to seven magnocellular 
cells (both ON- and OFF-center cells), dem- 
onstrating that the population response did 
not diminish considerably at or near isolu- 
minance. The distribution of best balance 
points of all cells studied showed that the 

red-green zero or balanced contrast varies 
considerably from cell to cell, particularly for 
the parvocellular cells (Fig. 4). The variation 
seen in the magnocellular cells seems ade- 
quate to suggest that the system as a whole is 
not silenced at isoluminance, as directly dem- 
onstrated by the multiple unit recorlng data. 
These findings are in agreement with earlier 
stules that used different methods (1 4). 

To estimate the extent to which the over- 
all activity of the color-opponent and of 
broad-band systems declines near isolumi- 
nance, we assessed the response of each cell 
at a red-green ratio of 0.63 (where the mean 
balance point is for the magnocellular cells) 
and compared it with responses obtained to 
the red and green stimuli with a 0.8 log 
intensity difference between them. For the 
66 parvocellular cells, this analysis showed a 
3.5-fold mean response decrement; for the 
41 magnocellular cells, a 2.6-fold decrement 
was found. The difference in decrement for 
the two cell types was not statistically signif- 
icant (P = 0.01). 

In conclusion, our psychophysical find- 
ings show that texture perception, which is 
generally believed to be mediated by the 
color-opponent system, is compromised at 
isoluminance in a manner similar to motion 

log Luminance LL * 4 0 0 ~ ~ ~  
50 - contrast 
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Fig. 3. Single-unit data from the lateral geniculate nucleus. (A and B) Responses of two parvocellular 
cells at various luminance contrasts to a flickering red and green light spot of maximum color contrast. 
Cell P591 became unresponsive at zero luminance contrast; cell P452, which was strongly selective for 
red, remains active at all contrasts shown. (C) The responses of a magnocellular cell for the same 
stimulation as that used for the cells P591 and P452. The cell is not silenced at any ratio, but exhibits 
frequency doubling (responds almost equally to both red with green light exchanges) at a contrast of 
23%. When the same cell was tested by achromatic stimuli of less than 2.5%, contrast gave no 
discriminable response. (D) Multiple unit responses in magnocellular layers of the lateral geniculate 
nucleus (five to seven cells, both ON- and OFF-center), showing activity at all red-green luminance 
ratios. Identical responses were obtained with drifting sinusoidal red-green gratings. 

and stereopsis, which have been proposed to 
be mediated by the broad-band system (6). 
That color information can to some extent 
be used for the preparation of motion and 
stereopsis is supported by the observation 
that an increase in color contrast improves 
perceptual performance on these tasks. 
These findings are in agreement with psy- 
chophysical studies (12) and with clinical 
work that shows that patients with major 
deficits in color discrimination not only have 
normal chromatic contrast sensitivity but 
yield normal evoked potentials under isolu- 
minant conditions (15). Our physiological 
data show that, at psychophysically defined 
isoluminance, both the color-opponent and 
the broad-band systems continue to respond 
in the lateral geniculate nucleus but do so at 
a similarly reduced rate. Taken together, our 
findings suggest that impairment in vision at 
isoluminance cannot be attributed uniquely 
to the inactivation of the broad-band path- 
way as has been suggested by Livingstone 
and Hubel (3, 5, 6). We propose that the 
color-opponent system can use both wave- 
length and luminance information to ana- 
lyze color and form for object vision (16), 
whereas the broad-band system, although 
color-blind in the sense that it is probably 
incapable of discriminating different object 
colors, can use either wavelength or lumi- 
nance cues to extract border information for 
spatial and temporal vision. 
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Fig. 4. Histogram showing the distribution of 
best balance points for parvocellular and magno- 
cellular cells for one of the monkeys. The best 
balance point is the contrast at which the cell 
produced balanced responses to both phases of 
the red-green light exchange for maximum color 
contrast. For the parvocellular system this point 
represents the null or zero point, at which the cell 
gives virtually no response to the red-green alter- 
nation. The zero point for parvocellular and the 
balance point for magnocellular cells both vary 
from cell to cell, but much more greatly for the 
former. 
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