
The data showing that the nef product of 
one virus (HW-lSF2) can affect the replica- 
tion of other H W -  1 as well as HW-2  strains 
(Fig. 4 and Table 1) suggest that common 
sequences in the LTR of these viruses are 
responsive to the nefprotein. In this regard, 
the observed lack of effect of HW-lsF2 nef 
on the highly cytopathic and fast replicating 
HIV-1SF33 strain and the later sequential 
isolates from infected individuals (HW-  
1 ~ ~ 1 3 ,  HW-1~~216,  and HW-1~~665)  is im- 
portant. Since a functional nefis supplied in 
these infections by the plasmid, these more 
pathogenic HIV-1 variants that emerged 
over time in individuals may have mutated 
in the LTR sequences responsive to neJ: 
Alternatively, other positive regulatory ele- 
ments might be more potent in these strains 
and outweigh the nefmediated suppression 
of replication. A comparison between the 
LTR regions of responsive and nonrespon- 
sive isolates should provide insight into this 
possible mechanism of HIV pathogenesis. 

In summary, our observation on the dif- 
ferential effect of cell lines expressing the 
HIV-lsF2 nefprotein on replication of HIV 
strains strongly suggest a key role for this 
viral gene in the establishment and mainte- 
nance of latent viral infection and in HIV 
pathogenesis. Further studies with these 
lymphoid cell lines should allow us to deter- 
mine the mechanism by which nefexerts its 
negative effect. Moreover, they provide 
valuable cell culture systems for defining 
factors involved in activating latent infec- 
tions. Finally, these results suggest that ma- 
nipulation of nef in early stages of HIV 
infection may prove effective in therapeutic 
approaches. 
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RNA Editing in Plant Mitochondria 

Comparative sequence analysis of genomic and complementary DNA clones from 
several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence 
divergences between the genomic and the messenger RNA-derived sequences. These 
sequence alterations could be most easily explained by specific post-transcriptional 
nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to 
altered codons in the mRNA that specify amino acids better conserved in evolution 
than those encoded by the genomic DNA. Several instances show that the genomic 
arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino 
acid positions that are highly conserved as tryptophan in the homologous proteins of 
other species. This editing suggests that the standard genetic code is used in plant 
mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in 
different plant species. The apparently frequent and non-species-specific equivalency 
of CGG and TGG codons in particular suggests that RNA editing is a common feature 
of all higher plant mitochondria. 

S EQUENCE ANALYSIS OF GENOMIC 

and cDNA clones from the mitochon- 
drially encoded q~ochrome oxidase 

subunits I1 (~0x11) and I11 (coxIII), the cyto- 
chrome b (cytb), and the reduced nicotin- 
amide adenine dinucleotide-dehydrogenase 
subunit I (nadl) loci revealed a number of 
discrepancies between the two respective 
sequences. One of these instances within the 
coding region of cox111 was reported earlier 
(1). Several independently derived cDNA 
clones contained two adjacent T residues 
where the genomic DNA encodes C's. The 
cDNA spe;fies phenylalanine instead of the 
proline specified by the genomic DNA, 
where phenylalanine is conserved in the 
human, yeast, and Neuvospora proteins (Fig. 
1). 

Further analysis has now shown that such 
nucleotide exchanges are not a singular 
event at this locus, but occur at many posi- 
tions in several different genes. Three addi- 
tional nucleotide changes are found in the 
analyzed coding region of the coxIII cDNA 
sequence, all involving C to T transitions 

Institut fiir Genbiologische Forschung, Ihnestrafie 63, 
D-1 Berlin 33, Federal Republic of Germany. 

(Fig. 1). All four events are nonsilent and 
specie amino acids in the cDNA sequence 
that are better conserved in other species at 
the respective positions than the genome- 
encoded amino acids (Fig. 1C). 

Artifacts of cDNA cloning had been as- 
sumed when the first sequence differences 
between genomic and the mFWA-derived 
DNAs were observed. This explanation now 
seems unlikely since a number of such events 
have been observed in apparently physically 
"normal" sequence surroundings that give 
no indication as to why reverse transcriptase 
or the bacterial amplification processes 
should introduce these particular modifica- 
tions repeatedly. The conservation of the 
cDNA-specified amino acids between differ- 
ent species also indicates that the cDNA 
sequence is correct. 

These nucleotide divergences between ge- 
nomic and mRNA-derived sequences are 
not restricted to coding regions, but are also 
found, for example, in the trailer sequence of 
the coxIII locus (Fig. lB), which presumably 
is not translated. The effect of these untrans- 
lated alterations is as yet unclear and needs 
further experimental evaluation. 
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(Left) The substitution of two consecutive '&tosines 
(positions 564 and 565) by thymidines in the cDNA is 
documented in the gel alignment. (Right) The single C 
at position 521 [in (B)] is edited to T in the cDNA. 
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564 
V V V P V K T N L R L I V  

Gen~mlc : GTG GTT GTA CCA GTC AAA ACG AAT CTC CCT CTT ATT GTC 
CDNA : GTC GTT GTA CCA CTC AAA ACC AAT CTC CGT CTT ATT GTC 

639 
G V K C D A V P G R L N Q I  

TCG CCT GTA CCT TCC TCA CGT GTC AAA TGT GAT GCT GTA CCT GGT CCT TTA AAT CAG ATC TCC ATG TCG CTA CAA 
TGG GCT GTA CCT TCC TTA GGT GTC AAA TGT GAT GCT CTA CCT GCT CGT TTA AAT CAG ATC TCC ATC TTG GTA CAA 

7 1 4  
R E G V Y Y G Q C S E I C G T N H A F M P I V I E  

CGA GAA CGA GTT TAC TAT GGT CAA TGC ACT GAG ATT TCT CGA ACT AAT CAT CCC TTT ATC CCT ATT GTC ATA GAG 
CGA GAA CGA GTT TAC TAT GCT CAA TGC AGT GAG ATT TCT CGA ACT AAT CAT GCC TTT ATG CCT ATT GTC ATA CAC 

r e ,  

A V S A T D Y T  V S N L F I P P T S *  
CCT GTT TCC CCA ACA GAT TAC ACA GTC TCA AAT CTT TTC ATC CCA CCA ACC TCA TAA 
CCT GTT TCC GCA ACA CAT TAC ACA GTC TCA AAT CTT TTC ATC CCA CCA ACC TCA TAA 

Flg. 2. Genomic and cDNA sequences of the Oenothera roxll coding region. Both DNA sequences are 
shown aligned with the sequence divergences indicated by boxes. The corresponding amino acids are 
shown above and below the nucleotide sequences. Numbering starts from the first coding nucleotide 
(2). The derived amino acids show that the cDNA-encoded sequence is better conserved in evolution 
than the polypeptide specified by the genomic DNA. The asterisk indicates the termination codon. 

determinants, however, are needed for silent 
exchanges, the consequences of which re- 
main to be investigated. 

The presumably post-transcriptional 
transformation of CGG codons to TGG 
suggests that the standard genetic code may 
be used in plant mitochondria. The RNA 
editing process we described could resolve 
the uncertainty about the suggested diver- 
gence from the standard genetic code with 
CGG coding for tryptophan (2-4). The 
apparent free exchangeability of CGG and 
TGG codons in different plant species at a 
given triplet position conserved as trypto- 
phan in the evolution of several different 
genes indicates that RNA editing might be a 
general feature of higher plant mitochon- 
dria. 

The consequences of alterations in nucle- 
otides from coding regions that lead to 
amino acid alterations differ from the silent 
exchanges in coding regions of the nadl (6, 
7) and cytb loci (4, 5) and the alterations in 
the presumably untranslated trailer sequence 
of the coxlll transcript (Fig. 1B). 

The particular CGG triplet alteration to 
TGG at the mRNA level, however, has 
wider im~lications for the decoding and " 
translation system of higher plant mitochon- 
dria. This specific modification in the cDNA 
sequence o i  Oenotheva suggests that in these 
instances the only tRNA-Trp so far found in 
plant mitochondria (8), which specifically 
recognizes the UGG codon, is sufficient to 
incorporate tryptophan in those positions 
highly conserved as tryptophan between dif- 
ferent species of higher plants, fungi, and 
mammals. It thus seems likelv that the stan- 
dard genetic code is used in higher plant 
mitochondria with the genomic CGGs 
changed in those instances ;o UGG codons 
in the mRNA (3). Not all CGG codons 
appear to be altered, however, since highly 
conserved arginines are found in several 
instances of genomic CGG codons (9). 

The numerous differences between the 
~enomic and the mRNA-derived cDNA se- " 
quences are best explained by an RNA 
editing process in plant mitochondria that 
introduces the specific sequence alterations 
described in this report. Other RNA editing 
processes have been observed; the most 
extensive example is in trypanosome mito- 
chondria, where U residues not encoded by 

DNA are inserted with varying frequencies 
into the mRNA (10). RNA editing in Phy- 
samm polycephalum involves the insertion of 
cytosines in fairly uniform spacing into the 
mRNA (11). The mammalian apolipopro- 
tein B mRNA is edited by a single C to U 
change (10, 11). 

RNA editing in plant mitochondria as 
investigated in Oenotheva appears to involve 
most frequently the change (or chemical 
modification) of cytosine to uridine. So far 
no examples of additionally inserted nucleo- 
tides have been found in Oenotheva. The 
editing process appears to maintain the 
number of nucleotides, only changing spe- 
cific identities. The parameters that deter- 
mine which individual nucleotides will be 
edited in higher plant mitochondria are un- 
clear, but they do not appear to be simple, 
linear seauence motifs. No obvious features 
potentially acting as editing signals can be 
detected in the sequences surrounding the 
edited nucleotides at the primary sequence 
or secondary structure level. Extensive sec- 
ondary structure, however, might preclude 
access of the RNA editing activity in plant 
mitochondria, since no nucleotide changes 
have been reported between directly se- 
quenced termini of the wheat mitochondria1 
18s ribosomal RNA and the respective gene 
(12). 

One of the selection criteria of the editing 
specificities might involve pressures on the 
incorporation of evolutionarily conserved 
and thus supposedly hctionally important 
amino acids at particular positions. Other 

- - 
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