
BASl Has a Myb Motif and Activates HIS4 
Transcription only in Combination with BAS2 

The BASl and BAS2 proteins are both required for activation of GCN4-independent 
(basal) HIS4 transcription in yeast. BAS1 has an NH2-terminal region similar to those 
of the myb proto-oncogene family. BASl and BAS2, which contains a homeo box, 
bound to adjacent sites on the HIS4 promoter. The joint requirement of BASl and 
BAS2 for activation is probably not due to cooperative binding or the transcriptional 
control of one of the genes by the other. Although BASl and BAS2 were both required 
for activation of HIS4 transcription, BASl was not required for BAS2-dependent 
expression of the secreted acid phosphatases. The transcriptional activators of HIS4 
have DNA binding domains that are conserved in evolution (BAS1 = Myb, BAS2 
= homeo box, GCN4 = Jun). Their interactions, therefore, may be relevant to the 
control of gene expression in more complex systems. 

T HE HIS4 GENE OF Saccliaromyces 
cerevisiae is regulated by two control 
systems: general and basal. General 

control is a global response to amino acid 
starvation; limiting a single amino acid in- 
creases the transcription of HIS4 and other 
amino acid biosynthetic genes (1). Tran- 
scriptional activation by general control is 
mediated by the trans-acting GCN4 protein 
that binds to 5'-TGACTC-3' sequences in 
the promoters of target genes (2). In the 
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absence of amino acid starvation or in 
strains deleted for GCN4, HIS4 is still tran- 
scribed at a high basal level. Two trans- 
acting proteins, BASl and BAS2, are re- 
quired for this GCN4-independent tran- 
scription of HIS4 (3). Genetic analysis re- 
veaied a cis-acting region of  HIS^, from 
-246 to -215, which is required for the 
basal transcription. Strains that lack both 
basal and general control (basl-2 bas2-2gcn4- 
2 strains) show little HIS4 transcription and 
require histidine for growth. 

BASl and BAS2, like GCN4, are global 
regulatory proteins. Strains carryini dele- 
tions of either BAS1 or BAS2 require ade- 
nine for normal growth, presumably be- 
cause these proteins also activate purine 
biosynthesis (3). In addition, BAS2 [also 
known as P H 0 2  (4)] is required for expres- 
sion of the secreted acid phosphatases that - - 
enable yeast to use organic phosphates in the 
growth medium as a phosphate source. 
BAS2 binds to the HIS4 promoter, as dem- 
onstrated with crude extracts of yeast in gel 
shift assays (3); however, BAS1-dependent 
DNA binding was not detected in a similar 
assay. We now show that BAS1, like BAS2, 
is a DNA binding protein and identie the 
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binding sites in the HIS4 promoter for both. 
In the absence of adenine BASl and 

BAS2 jointly stimulated HIS4 transcription 
about 100 times more than either alone 
(Fig. 1A). The presence of adenine reduced 
this joint stimulation of transcription from 
115 units to 13 units. Thus HIS4 transcrip- 
tion is under both adenine and phosphate 
control (3). The adenine and phosphate 
regulation of HIS4 transcription may be 
related to the roles of BASl and BAS2 in 
purine and phosphate regulation. Regula- 
tion of HIS4 transcription by extracellular 
adenine could reflect an interconnection of 
the histidine and purine biosynthesis path- 
ways (5). 

In addition to activating HIS4 basal tran- 
scription, BAS2 is required for expression of 
the secreted acid pho&hatases (6 j  (Fig. 1B). 
In vitro BAS2 binds directly to the promot- 
er of PHO.5, which encodes the major secret- 
ed acid phosphatase (3, 7). In contrast, a 
bas1 BAS2 strain has virtually identical levels 
of the secreted acid phosphatases as does an 
isogenic BAS1 BAS2 strain (Fig. 1B). 
Therefore, BAS2 activates the ex~ression of 
the secreted acid phosphatases independent- 
ly of BAS1. 

The DNA sequence of BAS1 predicts an 
89.6-kD protein of 811 amino acids (Fig. 
2). Amino acids 85 to 215 of BASl are 
similar to a motif found in Myb proteins of 
higher organisms (Fig. 2). The Myb motif 
was first identified in the v-myb gene of 
avian mveloblastosis virus 18). Cellular ho- 
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mologs were then found in chicken (9), 
Drosopliila (lo), mouse (1 I), humans (12), 
and corn (13). The Myb motif of higher 
organisms contains three repeats of a se- 
quence that has three regularly spaced tryp- 
tophan residues. Within each repeat, the 
tryptophans are separated by 18 or 19 ami- 
no acids, and the third tryptophan of a 
repeat is separated by 12 amino acids from 
the first tryptophan of the next repeat. The 

register of sequence repeats indicated in Fig. 
2 may not be the functional Myb repeat. 

The BASl protein contains almost three 
Myb repeats (Fig. 2) (14). The second Myb 
repeat of BASl contains a tyrosine in place 
of the third tryptophan. In the C1 protein of 
corn, an isoleucine replaces the first trypto- 
phan in a Myb repeat. Perhaps the substitu- 
tion of a hydrophobic amino acid for a 
tryptophan is acceptable for function. BAS1 
contains additional conserved Myb motifs; 
the second Myb repeat of BAS1 contains the 
amino acid sequence PGRT (at positions 
146 to 149), which occurs at the similar 
position in the third repeat of other Myb 
proteins. BASl also contains the sequence 
GPGSKGX(121LISK (where X is any amino 
acid), starting at position 161 and overlap- 
ping the junction of the second and thitd 
Myb repeats. This sequence conforms 
to a purine nucleotide binding motif, 
GXGXXGX(l I-171HfHfXK, where Hf is a 
hydrophobic amino acid (15). The purine 
binding motif and the involvement of pu- 
rines in HIS4 basal regulation could be 
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Fig. 1. BAS1 and BAS2 regulation of HIS4 and 
secreted acid phosphatase levels. ( A )  HIS4 basal 
level transcription as measured by P-galactosidase 
levels. Isogenic uva3-52 strains (3) ,  containing 
either wild type (+) or deletion ( - )  alleles of 
GCM4, BASI,  or BASZ, were transformed to 
Ura+ with a low copy number YCp50 centrornere 
plasmid containing a HIS4-lacZ fusion, pFN8 
(17). Extracts of these strains were assayed for P- 
galactosidase activity (32). A control CYC1-lac2 
fusion gave P-galactosidase values that varied by 
less than 20% as the adenine levels were varied. 
(B) BAS1 and BAS2 regulation of acid phospha- 
tase activity. Strains of the indicated genotype 
were assayed for secreted acid phosphatase activi- 
ty (33). The P H 0 5  gene encodes the major induc- 
ible secreted acid phosphatase (7 ) .  
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Fig. 2. BASl contains a Myb domain. The predicted amino acid sequence of BASl is compared with 
Drosophila c-Myb (lo), chicken c-Myb (9, 15), mouse c-Myb (11), and Zea mays C1 protein (13). 
Asterisks indicate the conserved tryptophan residues. Residues that are identical between BASl and the 
other Myb proteins are boxed. The numbers on the left give the position for the NH2-terminal amino 
acid on each line. The BASl DNA sequence has been submitted to GenBank. 
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Fig. 3. BASl and an 
NH2-terminal fragnent 
of BASl bind to the 
HIS4 promoter. (A) Gel 
shift assay using full- 
length BAS1. Extracts - 
were ~reoared from 
yeast G4-2 basl-2 bas2- Y tBAS2 2 ura3-52) that contained 
either the high copy 

-+ z- number 2 p  CALI pro- 
moter expression plas- 
mid with no insert 
(pAB477, URAJ selec- 

Free table marker; control 
I lanes) or the same plas- 

mid with a Sue I-Mlu I 
DNA fragmant contain- 

ing BASl inserted downstream of the GALl promoter (pCB159; BASl lanes). Assays were performed 
as described (34). The control lanes 1 and 2 and the BASl lanes 3 and 4 are extracts from cultures of 
independent transformants and show the variability in the level of BASl binding activity (possibly 
because the high levels of BAS1 kill the yeast cells). The filled circle on the right side indicates a complex 
due to a yeast protein [which is not GCN4 BAS1, or BAS2, see (2)] that binds strongly to the HIS4 
promoter (sequences -261 to -172, relative to HIS4 ATG). (B) Gel shift assay of an NH2-terminal 
fragment of BAS1. Reactions (25 p1 total volume) included 2 pl of crude E. coli lysate (0.70 mg per 
milliliter of protein) that contained either no BASl (control lane) or an NH2-terminal fragment of 
BAS 1. The preparation of these cells and extracts is in (35). The arrow indicates the complex with the 
amino terminal fragment of BAS1. An E. coli protein, present in both the control and BASl amino 
terminal fragment containing lysates, also bound to the HIS4 promoter fragment (sequences -261 to 
- 172, relative to the HIS4 ATG). (C) BASl and BAS2 do not show cooperative biding in vitro. AU 
gel shift assays had 10 p1 of yeast extract. Left third, no BASl; middle third, intermediate levels of 
BASl (1.5 p1 of BASl extract); right third, high levels of BASl (4 p1 of BASl extract). These extracts 
were prepared from a gm4-2 basl-2 bas2-2 strain that had a high copy number URA3 2 p  GAL1 
expression plasmid with either no insert (pAB477; control extract) or the BASl gene inserted 
downstream of the GAL1 promoter (pCB159; BASl extract). The volume (in microliters) of BAS2 
extract was varied as shown. These extracts were prepared from a gm4-2 basl-2 bas2-2 strain that had a 
high copy number 2 p  URAJ plasmid with either no insert (YEp24) or a 6.2-kb Cla I fragment of the 
BAS2 gene (pAB291). AU extracts were diluted to 1:O mg of protein per milliliter before mixing. The 
order in which these extracts were added had no effect on the assay. An Eco RI-Hind I11 DNA 
fragment of a plasmid that contained HIS4 promoter sequences -268 to -209 cloned into the Sal I site 
of pUC18 was used. 

explained if BAS 1 function were modulated 
by the binding of a purine nucleotide to 
BAS 1. 

When the BAS1 coding sequences were 
transcribed in yeast from the strong GALl 
promoter, BAS1-dependent binding activity 
to the HIS4 promoter was detectable in 
crude yeast extracts by gel shifi analysis (Fig. 
3A). The specific DNA binding activity of 
BASl was contained in an NHz-terminal 
tiagment (amino acids 1 to 378) that con- 
tains the Myb motif (Fig. 3B). Since insuffi- 
cient quantities of BASl are available from 
yeast for DNase I footprint analysis, BASl 
was prepared from an overexpressing strain 
of Escherichia coli. The E. coli-derived BASl 
bound to HIS4 sequences that are required 
for BAS1-BASZdependent transcription of 
HIS4 (Fig. 4A). The HIS4 promoter se- 
quences required for BAS1-BAS2-depen- 
dent transcription were defined by linker 
insertion-deletion analysis and are indicated 
by the vertical bar in Fig. 4A (3, 16). 

BAS2 derived from E. coli also bound 
sequences in the HIS4 promoter that are 
required for BAS1-BAS2-dependent HIS4 
transcription (Fig. 4B). Within the se- 
quences protected from deoxyribonuclease I 
(DNase I) digestion by BAS2 is a 16-base 
motif that differs fiom (lTAA), by a single 
nucleotide (Fig. 4C). The homeo box of 
BAS2 is most closely related to that of En, 
the protein product of the engrailed gene of 
Drosophila (17). Interestingly, En binds 
tightly to the HIS4 promoter and gives a 
protection pattern almost identical to that of 
BAS2 (Fig. 4B). 

BASl and BAS2 prepared from overex- 
pressing strains of E. coli can bind simulta- 
neously to the HIS4 promoter (Fig. 4B). 
The sequences protected from DNase I by 
the simultaneous binding of BASl and 
BAS2 (Fig. 4C) closely match the sequences 
required for BAS1-BAS2-dependent tran- 
scription (18). No evidence for cooperative 
biding of E. coli-derived BASl and BAS2 
was observed in this footprint analysis (Fig. 
4B) or in gel shifi analysis (19). One objec- 
tion to these experiments is that BASl and 
BAS2 prepared from E. coli may lack a post- 
translational modification required for a co- 
operative interaction. Furthermore, both 
proteins produced in E. coli are partially 
proteolyzed [see (20)l. These problems were 
avoided by producing BASl and BAS2 in 
yeast, where the correct protein modifica- 
tions would be made and proteolysis was 
not evident. We did not detect any evidence 
for cooperative binding to the HIS4 pro- 
moter. As the amount of BAS2 increased, 
the presence or absence of BASl did not 
alter the intensity of the BAS2-DNA com- 
plex (Fig. 3C). In addition, even at the 
highest amounts of BAS2, the presence of 

SCIENCE, VOL. 246 



BASl did not result in a higher molecular 
weight BAS1-BAS2-DNA complex expect- 
ed from cooperative binding. The reciprocal 
experiment, where the amount of BASl is 
varied in the presence or absence of BAS2, 
also 
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(TAA), (25). Perhaps such simple repeated 
sequence motifs represent ancestral DNA 
binding sites for homeobox proteins. 

The fact that BASl contains a Myb do- 
main and BAS2 contains a homeo box may 
shed some light on the activation properties 
of these homologs in more complex systems. 
The c-Myb family proteins might cooperate 
with certain homeo box moteins, such as 
En, to activate transcription. For example, 
the c-myb gene of Drosophila is expressed 
during embryogenesis (26). Expression of c- 
myb genes in vertebrates occurs primarily in 
immature hematopoietic cells ( 2 7 )  and the 
constitutive ex~ression of c-mvb cDNA 
blocks erythroleukemia cell differentiation 
in vitro ( 2 8 ) .  The chicken v-myb gene is 
able to transform only myeloid cell line- 
ages in vivo or in vitro ( 2 9 ) .  Perhaps 
only myeloid cell lineages contain a sec- 
ond protein, like BAS2, that cooperates 
with ;he v-Mvb   rote in to activate the tram 

2 L 

scription of genes that cause a transformed 
phenotype. 

The inability of the En protein in Drosoph- 
ila culture cells to activatetranscription from 
a promoter that contains multiple copies of a 
DNA seauence to which En binds in vitro 
(30) could also reflect the requirement for a 
second protein. En probably binds to this 
promoter in vivo because En can inhibit Ftz- 
activated transcription from the same pro- 
moter element when both En and Ftz are 
coexpressed in the Drosophila cells (31). One 
explanation for discrepancy between En 
binding and En activation may be that the 
En protein, like BAS2, may require a second 
DNA binding protein for activation of tran- 
scription. 

The molecular basis for the joint require- 
ment of BASl and BAS2 for activation of 
HIS4 transcription is not yet known. Al- 
though both BASl and BAS2 are required 
to activate HIS4 transcription, BAS2 acti- 
vates transcription of the secreted acid phos- 
phatases independently of BAS 1. In this role 
of activating transcription of the secreted 
acid phosphatases, it is not known if BAS2 
requires a second DNA binding protein to 
take the place of BAS1. The ability of a 
DNA binding protein to activate some pro- 
moters by itself and other promoters only in 
concert with a second DNA binding protein 
could be important for developmental sys- 
tems. For example, two regulatory proteins, 
A and B, localized at either end of the 
Drosophila embryo might form a gradient 
during embryogenesis-A, A + B, B-from 
anterior to posterior. Complex patterns of 
transcriptional expression could be generat- 
ed with only these two activators if different 
promoters responded to the exact concen- 
trations of each activator or combination of 
activators. 
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Vaccination with a Synthetic Zona Pellucida Peptide 
Produces Long-Term Contraception in Female Mice 

The zona pellucida surrounding mouse oocytes is an extracellular matrix composed of 
three sulfated glycoproteins, ZP1, ZP2, and ZP3. It has been demonstrated that a 
monoclonal antibody to ZP3 injected into female mice inhibits fertilization by binding 
to the zona pellucida and blocking sperm penetration. A complementary DNA 
encoding ZP3 was randomly cleaved and 200- to 1000-base pair fragments were 
cloned into the expression vector Xgtll. This epitope library was screened with the 
aforementioned contraceptive antibody, and the positive clones were used to map the 
seven-amino acid epitope recognized by the antibody. Female mice were immunized 
with a synthetic peptide containing this B cell epitope coupled to a carrier protein to 
provide helper T cell epitopes. The resultant circulating antibodies to ZP3 bound to 
the zona pellucida of immunized animals and produced long-lasting contraception. 
The lack of ovarian histopathology or cellular cytotoxicity among the immunized 
animals may be because of the absence of zona pellucida T cell epitopes in this vaccine. 

T HERE IS CURRENTLY MUCH INTER- tion, the imrnunogen must induce an immu- 
est in the development of a safe and nological response to an endogenous anti- 
effective contraceptive vaccine for gen that is effective as a contraceptive with- 

population control. An ideal vaccine should out eliciting a cytotoxic responseihat might 
have an effect that is long-lasting and highly result in abnormal reproductive function or 
specific and should inhibit fertilization as a other damage. 
contraceptive agent rather than disrupt early 
development as an abortifacient. In addi- 
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The mammalian zona pellucida (zona), 
which surrounds growing oocytes and ovu- 
lated eggs, is a potential immunogen for a 
contraceptive vaccine (1, 2). The zona of the 
mouse is composed of three sulfated glyco- 
proteins (ZP1, ZP2, and ZP3) (3). Sperm 
initially bind to ZP3 via 0-linked oligosac- 
charide chains, and continued binding in- 
volves ZP2 as a secondary sperm receptor. 
These two zona proteins form filaments that 
are crossed linked by ZP1 in the extracellular 
zona pellucida (4). The zona is unique to the 

almost twice as fast as full-length BAS2) that bound 
to the HIS4 promoter. Expression of BAS2 from the 
lambda PL promoter in strain AR68 or from the T7  
promoter in other protease deficient strains did not 
prevent proteolysis. The full-length BASl and BAS2 
from bacteria, migrated during gel shift analysis to 
the same position as yeast-derived BASl and BAS2. 
The lane marked by C contains 45 p1 of heparin 
agarose-purified control extract (0.10 pg per millili- 
ter of total protein, prepared identically as for BAS1, 
BAS2, and En extracts) from control-induced 
BL21(DE3) bacteria that had the pLysS plasmid 
and the T7  polymerase expression plasmid with no 
insert. A similar control (19) for the BASl extract 
with an extract prepared from a heat induced control 
lambda PL expression strain had results identical to 
lane C. 
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ovary, highly antigenic, and accessible to 
circulating antibody during the intraovarian 
oocyte growth phase prior to meiotic matu- 
ration and ovulation (1, 2). \ .  , 

Passive immunization of mice with sera 
against the mna produces reversible contra- 
ception without obvious side effects (1, 5 ) .  
In more recent experiments, rat monoclonal 
antibodies against ZP2 and ZP3 were inject- 
ed into female mice. The antibodies bound 
specifically to the zonae surrounding intra- 
ovarian oocytes and produced long-term 
(more than 8 weeks), reversible contracep- 
tion by preventing sperm penetration of the 
zona pellucida (6, 7). However, the epitopes 
recognized on mouse ZP2 and ZP3 by five 
different rat monoclonal antibodies are not 
present on other mammalian zonae pelluci- 
dae (6, 7), limiting their usefulness as con- 
traceptive agents. 

The recent cloning of the ZP3 gene and 
the characterization of its transcript and 
protein product (8, 9) have provided suffi- 
cient molecular detail of the zona proteins to 
suggest an alternative contraceptive strategy 
based on active immunization with a zona 
peptide. We have made use of the specificity 
of a monoclonal antibody to ZP3 known to 
block fertilization to identify a mna pellu- 
cida peptide for testing as a contraceptive 
vaccine. A 1.0-kb cDNA that contains se- 
quences encoding the epitope recognized by 
the monoclonal antibodv to ZP3 (8) was cut 

\ ,  

into random fragments, which were size 
selected (200 to 1000 bp) and cloned into 
the Agtll expression vector (10). This epi- 
tope library was screened with a monoclonal 
antibody to ZP3 (7) and the nucleic acid 
sequence of the cDNA insert from eight 
positive clones was determined (Fig. l k ) .  
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