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A Biochemical Correlate of the Critical Period for 
Synaptic Modification in the Visual Cortex 

Stimulation of phosphoinositide hydrolysis by excitatory amino acids was studied in 
synaptoneurosomes of kitten striate cortex at several postnatal ages. Ibotenate and 
glutamate stimulated phosphoinositide turnover during the second and third postnatal 
months; N-methyl-D-aspartate and ~~-cu-amino-3-hydroxy-5-methy~-4-isoxazoe pro- 
pionic acid (AMPA) were without effect. The developmental profile of ibotenate- 
stimulated phosphoinositide turnover parallels the postnatal changes in cortical 
susceptibility to visual deprivation. The transient increase in ibotenate-stimulated 
phosphoinositide turnover does not occur in visual cortex of kittens reared in complete 
darkness. 

ANIPULATIONS OF THE VISUAL 
environment during early postna- 
tal life can lead to profound and 

long-lasting changes in the functional orga- 
nization of the visual cortex. For example, 
temporary closure of one eyelid in kittens 
renders striate cortex unresponsive to stimu- 
lation of the deprived eye (1, 2). Respon- 
siveness to the deprived eye can be restored 
if it is again allowed to view a normal visual 
environment while the other eyelid is closed 
(3). This form of synaptic plasticity is limit- 
ed to a finite period of postnatal develop- 
ment referred to as the "critical" or "sensi- 
tive" period (2-5). Estimates of the length 
of the critical period have varied, but there 
is general agreement that sensitivity to brief 
lid closure begins in kittens at about 3 " 
weeks of age, peaks during the 5th week, 
and then gradually disappears between 12 
and 16 weeks (2-5). We report now that this 
is precisely the period of postnatal develop- 
ment when the excitatory amino acid ibo- 
tenate stimulates phosphoinositide hydroly- 
sis in striate cortex. Phosphoinositide turn- 
over leads to the formation of two intracel- 
lular second messengers, inositol triphos- 
phate (IP3) and diacylglycerol (DAG) (6). 

Center for Neural Science, Brown University, Provi- 
dence, RI 02912. 

Thus, these data suggest that excitatory syn- 
aptic transmission during the critical period 
is characterized by unique patterns of sec- 
ond messenger activity and that phosphoin- 
ositide hydrolysis may play a central role in 
the experience-dependent modification of 
visual cortex. 

There is evidence that synaptic excitation , & 

in the visual cortex depends on activation of 
excitatory amino acid (EAA) receptors (7). 
One class of EAA receptor is linked to a 
phosphoinosidase that catalyzes the hydrol- 
ysis of phosphatidylinositol-4,5 bisphos- 
phate to form DAG and IP, (8) .  Nicoletti et 
a / .  (9) have showed in rat hippocampus that 
this metabotropic EAA receptor is activated 
by glutamate, prefers the agonists ibotenate 

Fig. 1. (A) Sensitivity of binocular connections in 
striate cortex to eyelid suture at different postnatal 
ages, as estimated by Olson and Freeman by 
monocular deprivation (0) (2) and by Rlakemore 
and van Sluyters with the "reverse suture" para- 
digm (+) (3). The deprivation effect is the per- 
centage of neurons in area 17 with responses 
dominated by stimulation of the nondeprived eye 
[data from figure 1 of ( 5 ) ] .  (B) Phosphoinositide 
turnover stimulated by 10 FM ibotenate in synap- 
toneurosomes prepared from kitten striate cortex 
at different postnatal ages. Data points represent 
the means .f SEM of at least three experiments, 
expressed as percentage of basal phosphoinositide 
turnover. 

Table 1. Accumulation of [3H]IPl in striate 
cortical synaptoneurosomes prepared from 5-  
week-old kittens (11) .  Results are means 2 SEM 
expressed as percentage of basal phosphoinositide 
turnover. 

Concen- 
Agonist tration 

( F'F 

Glutamate 10 
100 

Ibotenate 10 
100 

NMDA 100 
300 

AMPA 300 
Carbachol 100 

Percentage 
of basal 
turnover 

108 2 5 
168 2 4 
372 r 14 
435 r 37 
1 1 0 2  7 
110 ? 4 
102 2 6 
300 r 34 

and quisqualate, and is unresponsive to N- 
methyl-D-aspartate (NMDA) and kainate. 
This site is distinct from the traditional 
quisqualate receptor; for example, it is not 
stimulated by DL-a-amino-3-hydroxy-5- 
methyl-4-isoxazole propionic acid (AMPA) 
and is not blocked by kynurenic acid. A 
similar site has been characterized in rat 
neocortex (10). In both rat hippocampus 
and neocortex the EAA-stimulated phos- 
phoinositide hydrolysis is low at birth, peaks 
during early postnatal life, and then declines 
with increasing age. These observations 
have prompted speculation that this mecha- 
nism is involved in developmental plasticity 
(9, 10). This hypothesis would be strength- 
ened considerably if it could be shown that 

3 NOVEMBER 1989 REPORTS 673 



the developmental transience of EAA-stimu- 
lated phosphoinositide turnover correlates 

Table 2. Accumulation of [3H]IPI in striate cortical synaptoneurosomes prepared from kittens of 
different ages. Results are means i SEM of at least three experiments. Basal phosphoinositide turnover 
was as follows: 10 days, 467 i 29 counts per minute (cpm); 34 days, 463 a 45 cpm; 56 days, 300 i 21 
cpm; 87 days, 224 i 6 cpm; and adulthood, 149 i 14 cpm. Agonist-stimulated phosphoinositide 
turnover is expressed as percentage of basal phosphoinositide turnover. 

with the well-characterized critical period 
for synaptic modification in the kitten striate 
cortex. We used a synaptoneurosome prepa- 
ration of kitten area 17  to investigate this 
possibility (1 1). 

We found that both L-glutamate and ibo- 

Postnatal age 
Agonist 

10 days 34 days 56 days 87 days Adulthood 

Glutamate 
1 x ~ o - ~ M  1 1 4 5  7 108 +. 5 101 a 3 95 a 6 101 i 7 
1 x ~ o - ~ M  185 i 12 168 i 4 120 t 7 122 i 1 118 i 20 
1 x l 0 - ~ ~ 1 4  193 13 241 t 9 168 i 6 166 i 6 133 a 21 
3 x 10-~~21 196 & 13 259 t 7 178 a 11 177 i 1 139 a 15 

Ibotenate 
1 x ~ o - ~ M  181 i 17 372 i 14 188 t 9 133 a 4 103 t 10 
1 x l 0 - ~ ~ 1 4  212 +. 17 435 t 37 260 i 16 175 i 1 123 a 12 

Carbachol 
1 x i 0 - ~ ~ 2 1  325 i 4 300 a 34 268 t 20 312 a 46 242 t 32 

tenate potently stimulate phosphoinositide 
turnover in striate cortex from 5-week-old 
kittens, while AMPA and NMDA (12) were 
ineffective at concentrations up to 300 FM 
(Table 1). The postnatal changes in iboten- 
ate-stimulated phosphoinositide turnover 
are correlated with the development of ocu- 
lar dominance plasticity in kitten striate cor- 
tex (Fig. 1). Glutamate-stimulated phos- 
phoinositide turnover had a similar develop- 
mental time course. but the correlation with velopment (18); the putative modulators of 

ocular dominance plasticity, acetylcholine 
and norepinephrine (19, 20), both potently 
stimulate phosphoinositide turnover in the 
neocortex (21). An alternative hypothesis, 
inspired by theoretical considerations (22), 
involves the interaction of second messenger 
systems linked to NMDA and non-NMDA 
receptors. It has been proposed that the 
strengthening of some synapses in striate 
cortex during development depends on the 
postsynaptic ca2+ conductance mediated by 
cortical NMDA receptors (23, 24). Synaptic 
modifications of the type observed in striate 
cortex could be explained if the second 
messenger system linked to phosphoinosi- 
tide metabolism specifically were to pro- 
mote the weakening of synaptic relations 
during development (25). According to this 
idea, input activity that is coincident with 
strong postsynaptic depolarization, which is 
a favorable condition for postsynaptic ca2+  
entry through NMDA receptor channels, 
would lead to an enhancement of synaptic 
strength. Input activation coincident with 
postsynaptic inactivity would stimulate 
phosphoinositide turnover b~7 means of the 

critical period plasticity was not as precise as 
that for ibotenate (Table 2). However, this 
result possibly is complicated by postnatal 
changes in glutamate uptake (13) and, be- 
cause glutamate is a mixed agonist, also by 
interactions between the EAA receptor sub- 
types (14). Nonetheless, the c~nclusion 
seems warranted that when the striate cortex 
is most sensitive to sensory deprivation, it is 
also most sensitive to stimulation of uhos- 
phoinositide hydrolysis by certain excitatory 
amino acids. 

We also routinely measured the stimula- 
tion of phosphoin~sitide turnover by the 
muscarinic cholinergic agonist carbachol 
(Table 2). Unlike the excitatory amino acids 
ibotenate and glutamate, 100 ;,I4 carbachol 
was effective at all ages, indicating that the 
transient increase in stimulated phosphoino- 
sitide turnover during the critical period is 
relatively specific to a mechanism linked to 
an ibotenate recognition site (15). 

We next investigated the development of 
ibotenate-stimulated phosphoinositide turn- 
over in the striate cortex of animals reared in 
complete darkness to see if this mechanism 
requires visual experience for its expression 
(16). We found that the transient rise in 
ibotenate-stimulated phosphoinositide turn- 
over at 5 weeks of age did not occur in the 
striate cortex of dark-reared kittens (Fig. 
2A). In contrast, stimulation by carbachol 
was unaffected by visual deprivation (Fig. 
2B). These findings further support the idea 
that EAA-stimulated phosphoinositide 
turnover may play a specific role in develop- 
mental plasticity because dark rearing post- 
pones the onset of the critical period (17). 

What role could EAA-stimulated phos- 

~ O ~ - N M D A  receutor without a concomi- 
. - 

Age (weeks) 
tant postsynaptic Ca2+ flux, and this would 
lead to a decrease in synaptic efficacy. Al- 

Fig. 2. Phosphoinositide turnover in striate corti- 
cal synaptoneurosomes prepared from normal 
(solid bar) and dark-reared (hatched bar) kittens 
at various ages when (A) stimulated by 10 pM 
ibotenate and (B) stimulated by 100 (*A4 carba- 
chol. Values are means a SEM of at least three 
experiments. *Difference benveen normal and 
dark-reared is statistically significant ( t  test, 
P < 0.002). 

though this hypothesis has  formdated 
largely on theoretical grounds (25), recent 
work by Palmer et a l .  (14) supports the idea 
that the second messenger systems linked to 
NMDA and non-NMDA receptors are an- 
tagonistic. They find in the neonatal hippo- 
campus that NMDA inhibits EAA-stimulat- 
ed phosphoinositide turnover in a Ca2+- 
dependent fashion. 

Tests of these ideas will require the devel- 

striate cortex is unique during the critical 
period for experience-dependent modifica- 
tions. 

phoinositide turnover play in the eiperi- 
ence-dependent modification of visual cor- 
tex? One possibility is that products of 
phosphoinositide turnover with second 
messenger activity simply enable the process 
of synaptic plasticity to proceed during de- 

opment of selective and potent antagonists 
of this metabotropic glutamate receptor. 
Nonetheless, whatever the role of EAA- 

---- 
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Angiosperm Diversification and Paleolatitudinal 
Gradients in Cretaceous Floristic Diversity 

The latitudinally diachronous appearance of angiosperm pollen during the Cretaceous 
is well documented, but the subsequent diversification and accompanying significant 
changes in floristic dominance have not been assessed quantitatively for a wide range of 
paleolatitudes. Trend surfaces fitted to within-palynoflora diversity data from 1125 
pollen and spore assemblages show that angiosperms f i s t  become floristically promi- 
nent in low paleolatitude areas (-2O0N to 20"s). Non-magnoliid dicotyledons show a 
similar but slightly delayed pattern of increase and are the principal component of 
angiosperm diversity from all areas sampled. Monocotyledons and magnoliid dicotyle- 
dons are significant primarily in low to middle paleolatitude palynofloras (-SOON to 
20"s) during the latest Cretaceous. As angiosperms become increasingly prevalent the 
importance of most non-angiosperm taxa either decreases or remains unchanged. The 
only apparent exception is a striking increase in gnetalean diversity concurrent with the 
initial angiosperm diversification at low paleolatitudes. 

A LTHOUGH THE ORIGIN OF ANGIO- 

sperms persists as one of the most 
widely debated issues in evolution- 

ary botany (1-4), the paleobotanical record 
demonstrates unequivocallv that the maior 
early diversification of the group occurred 
during the mid-Cretaceous (4-10). Through 
this interval manv of the characteristic re- 
productive features of extant flowering 
plants appear in the fossil record for the first 
time (1 i), and fossil angiosperm leaves and 
pollen exhibit marked, coincident, patterns 
of increasing diversity (6-10). By the Ceno- 
manian (earliest Late Cretaceous), at least 
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Field Museum of Natural History, Roosevelt Road at 
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four of the eleven extant angiosperm sub- 
classes (Magnoliidae, Hamamelidae, Rosi- 
dae, and at least one subclass of Liliopsida), 
as well as several distinct clades within these 
groups, had already differentiated (9) .  In- 
creased abundance of angiosperm fossils 
parallels this rise in diversity, and together 
these patterns have been used to infer eco- 
logical expansion (6,  7), perhaps as a func- 
tion of biological attributes of the angio- 
sperm clade (3, 12, 13), and possibly with 
direct effects on other plant groups (13). 
Although detailed analyses of local strati- 
graphic sections provide partial resolution 
of such ecological effects (7), extrapolation 
to the level of angiosperms as a whole 
requires a more inclusive geographic and 
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