concentrations of seven major ions, Cl-, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, were measured with a Dionex Model 2010i chromatograph, equipped wth AS4A (for anions) and FAST SEP CATION I and II (for cations) columns. Samples of 200 to 250 g were cut from both D-1 and D-3 and pumped through ion-exchange filters to measure total beta radioactivity in a Tennelec LB 1000 series Alpha/ Beta Counting System. Total beta radioactivity is routinely used to identify time-stratigraphic horizons associated with known atmospheric thermonuclear tests (6).

- L. G. Thompson, Microparticles, Ice Sheets and Climate [Rep. 64, Institute of Polar Studies (now Byrd Polar Research Center) Ohio State University, Columbus, OH, 1977]
- 6. G. Crozaz, C. C. Langway, Jr., E. Picciotto, U.S. Army Corps Eng. Cold Reg. Res. Eng. Lab. Res. Rep. 208 (1966).
- C. F. Raymond, J. Glaciol. 29, 357 (1983).
   J. F. Bolzan, J. Geophys. Res. 90, 8111 (1985).
   N. Rech, J. Glaciol. 34, 46 (1988).
- 8.
- 10. C. U. Hammer, H. B. Clausen, H. Tauber, Radiocar-bon 28, 284 (1988).
- 11. D. A. Fisher et al., Nature 301, 205 (1983).
- 12. W. S. B. Paterson et al., ibid. 266, 508 (1977); R.
- M. Koerner, IAHS AISH Publ. 118 (1977), p. 371. 13. C. U. Hammer et al., in Greenland Ice Core: Geophys-ics, Geochemistry, and the Environment, C. C. Langway, Jr., H. Oeschger, W. Dansgaard, Eds. (Geophys.
- Monogr. 33, American Geophysical Union, Washington, DC, 1985), pp. 90-94.

- 14. S. J. Johnsen, W. Dansgaard, H. B. Clausen, C. C. Langway, Jr. Nature 235, 429 (1972). C. Lorius, L. Merlivat, J. Jouzel, M. Pourchet, *ibid*.
- 15. 280, 644 (1979).
- CLIMAP Project Members, Geol. Soc. Am. Map 16. Chart Ser. MĆ-36 (1981).
- M. R. Legrand and R. J. Delmas, Ann. Glaciol. 10, 17 116 (1988).
- S. L. Herron and C. C. Langway, Jr., in Greenland Ice 18. Core: Geophysics, Geochemistry, and the Environment, C. C. Langway, Jr., H. Oeschger, W. Dansgaard, Eds. (*Geophys. Monogr. 33*, American Geophysical Union, Washington, DC, 1985), pp. 77–84.
- 19. J. R. Petit, P. Duval, C. Lorius, Nature 326, 62 (1987)
- 20. R. M. Koerner and D. Fisher, J. Glaciol. 89, 209 (1979).
- 21. P. Duval and C. Lorius, Earth Planet Sci. Lett. 48, 59 (1980).
- 22. L. G. Thompson and E. Mosley-Thompson, Science 212, 812 (1981)
- W. Dansgaard, H. B. Clausen, N. Gundestrup, S. Johnsen, C. Rygner, in Greenland Ice Core: Geophys-23. ics, Geochemistry, and the Environment, C. C. Langway, Jr., H. Oeschger, W. Dansgaard, Eds. (Geophys. Monogr. 33, American Geophysical Union, Washing-
- ton, DC, 1985), pp. 71–76. R. M. Koerner, D. A. Fisher, W. S. B. Paterson, *Can. J. Earth Sci.* 24, 296 (1987). 24 25. M. DeAngelis, N. I. Barkov, V. N. Petrov, Nature
- 325, 318 (1987). 26. L. G. Thompson, E. Mosley-Thompson, J. R. Petit,

## Carbon Dioxide Transport by Ocean Currents at 25°N Latitude in the Atlantic Ocean

Peter G. Brewer, Catherine Goyet, David Dyrssen

Measured concentrations of  $CO_2$ ,  $O_2$ , and related chemical species in a section across the Florida Straits and in the open Atlantic Ocean at approximately 25°N, have been combined with estimates of oceanic mass transport to estimate both the gross transport of  $CO_2$  by the ocean at this latitude and the net  $CO_2$  flux from exchange with the atmosphere. The northward flux was  $63.9 \times 10^6$  moles per second (mol/s); the southward flux was  $64.6 \times 10^6$  mol/s. These values yield a net CO<sub>2</sub> flux of  $0.7 \times 10^6$ mol/s (0.26  $\pm$  0.03 gigaton of C per year) southward. The North Atlantic Ocean has been considered to be a strong sink for atmospheric CO2, yet these results show that the net flux in 1988 across 25°N was small. For O<sub>2</sub> the equivalent signal is  $4.89 \times 10^{6}$ mol/s northward and  $6.97 \times 10^6$  mol/s southward, and the net transport is  $2.08 \times 10^6$ mol/s or three times the net  $CO_2$  flux. These data suggest that the North Atlantic Ocean is today a relatively small sink for atmospheric  $CO_2$ , in spite of its large heat loss, but a larger sink for  $O_2$  because of the additive effects of chemical and thermal pumping on the CO<sub>2</sub> cycle but their near equal and opposite effects on the CO<sub>2</sub> cycle.

**HE NORTH ATLANTIC OCEAN HAS** been widely regarded as an important  $CO_2$  sink and heat source for the atmosphere. The large-scale circulation consists of both the horizontal wind-driven gyre circulation and the vertically overturning thermohaline-driven circulation. Both act in concert to transport heat and trace greenhouse gases to latitudes where disequilibri-

um with the atmosphere occurs. Linkage of the heat and gas fluxes is a necessary component of carbon cycle and climate modeling, yet calculations of these fluxes have proceeded along independent paths. We have measured oceanic CO2 concentrations and related chemical properties (temperature, salinity, O<sub>2</sub> and NO<sub>3</sub> concentrations, and alkalinity) in a section through the Florida Straits at 26.5°N (Hollywood, Florida, to Great Isaacs Rock, Bahamas) and in the open Atlantic Ocean at 25°N (Bahamas to Africa) in order to test an earlier and controversial hypothesis of Brewer and Dyrssen (1), based on a few data, that treatment of CO<sub>2</sub> data in

Sea Level, Ice, and Climate Change (International Association of Hydrological Sciences, Canberra, Australia, 1979), pp. 227–234.
27. K. Chen and J. M. Bowler, Palaeogeogr. Palaeoclimatical Sciences and Scienc

- tol. Palaeoecol. 54, 87 (1985).
- 28. S. Manabe and D. G. Hahn, J. Geophys. Res. 82, 3889 (1977).
- 29. W. L. Gates, Science 191, 1138 (1976).
- 30. D. K. Rea, M. Lewen, T. R. Janecek, *ibid.* 227, 4688 (1985).
- 31. J. Hansen et al., J. Geophys. Res. 93, 9341 (1988). 32. Supported by the National Science Foundation Office of Climate Dynamics and the Division of Polar Programs (ATM-8519794), the National Geographic Society (3323-86), the Ohio State University and Academia Sinica of China. We thank the many individuals who contributed to the success of this program, especially the 50 Chinese and American participants. Initial support was provided by the National Academy of Sciences' Committee for Scholarly Communication with the People's Repub-lic of China. We thank B. Koci and the Polar Ice Coring Office for drilling the cores, the F. C. Hansen Company for assistance in the modification of a tree-ring incremental measuring device for use in ice core dating, S. Smith for illustrations, and K. Doddroe for typing. This paper is Contribution 655 of the Byrd Polar Research Center, The Ohio State University.

16 June 1989; accepted 23 August 1989

a manner identical to that used for heat transport would yield a very small net  $\text{CO}_2$ flux.

The section is the same as that used by others for the estimate of heat flux (2), and we made specific use of the oceanic transports of water derived from these studies to compute the chemical fluxes. The work was carried out on the Research Vessel Oceanus Cruise 205 in November 1988 at five stations across the Florida Straits and four stations in the open Atlantic (Fig. 1). Time did not permit a full oceanic section, and thus interpolation along density surfaces sampled by others (2-4) was necessary.

For the North Atlantic, the earlier calculations (2-4) have shown that the northward flow of 30 Sverdrups (Sv) (5), principally through the Florida Straits, has a mean temperature of 18.8°C, and that the compensating return flow has a mean temperature of 9.7°C. This difference provides the observed net heat flux of  $\sim 1.1 \times 10^{15}$  W. Although some uncertainty still surrounds this estimate (6), on the basis of atmospheric observations, the oceanic data are compelling.

The equivalent calculation for trace gases is more difficult because of the technical difficulty of obtaining measurements and the enrichment of gases in the cold, deep flows where mass transports are less easily determined. Moreover heat is an internally conserved property of sea water, whereas the biogenic gases are transferred both at the sea surface, because of thermal, partial pressure, and biogenic processes, and internally,

P. G. Brewer and C. Goyet, Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.

D. Dyrssen, Department of Analytical and Marine Chemistry, Chalmers University of Technology, S-412 96 Göteborg, Sweden.



Fig. 1. Oceanic total CO<sub>2</sub> concentrations (A) for station 9 in the open Atlantic at  $24^{\circ}38'N$ ,  $64^{\circ}1'W$  and (B) for the Florida Straits section (contours are in micromoles per kilogram).

**Table 1.** Estimates of oceanic chemical properties in selected depth intervals for the Florida-Bahamas section and for the 25°N section based upon four stations in the western basin. The layer transports are as calculated in (2); the negative sign indicates southward flow; Alk, alkalinity.

| Property          |                        |                        |                                     |                                                       | Flux                                                       |                               |                                                                   |
|-------------------|------------------------|------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------|
| Depth<br>(m)      | O2<br>(µmol/<br>liter) | Alk<br>(µeq/<br>liter) | CO <sub>2</sub><br>(µmol/<br>liter) | Trans-<br>port<br>(10 <sup>6</sup> m <sup>3</sup> /s) | $\begin{array}{c} O_2 \\ (10^3 \text{ mol/s}) \end{array}$ | Alk<br>(10 <sup>3</sup> eq/s) | $\begin{array}{c} \text{CO}_2\\ (10^3 \text{ mol/s}) \end{array}$ |
| Florida Straits   |                        |                        |                                     |                                                       |                                                            |                               |                                                                   |
| 0 to 25           | 190                    | 2423                   | 2047                                | 2.60                                                  | 494                                                        | 6300                          | 5322                                                              |
| 25 to 75          | 190                    | 2428                   | 2062                                | 4.80                                                  | 912                                                        | 11654                         | 9898                                                              |
| 75 to 150         | 172                    | 2449                   | 2135                                | 5.91                                                  | 1017                                                       | 14474                         | 12618                                                             |
| 150 to 250        | 163                    | 2454                   | 2190                                | 5.59                                                  | 911                                                        | 13718                         | 12242                                                             |
| 250 to 350        | 156                    | 2423                   | 2242                                | 3.60                                                  | 562                                                        | 8723                          | 8071                                                              |
| 350 to 450        | 140                    | 2418                   | 2232                                | 2.56                                                  | 358                                                        | 6190                          | 5714                                                              |
| 450 to 550        | 138                    | 2388                   | 2223                                | 2.05                                                  | 283                                                        | 4895                          | 4557                                                              |
| 550 to 650        | 145                    | 2377                   | 2262                                | 1.44                                                  | 208                                                        | 3423                          | 3257                                                              |
| 650 to 750        | 145                    | 2371                   | 2272                                | 0.87                                                  | 126                                                        | 2063                          | 1977                                                              |
| 750 to 850        | 145                    | 2371                   | 2277                                | 0.10                                                  | 15                                                         | 237                           | 228                                                               |
| Total flux        |                        |                        |                                     |                                                       | 4886                                                       | 71677                         | 63882                                                             |
| Mid-ocean section |                        |                        |                                     |                                                       |                                                            |                               |                                                                   |
| 0 to 25           | 210                    | 2476                   | 2104                                | 1.36                                                  | 286                                                        | 3367                          | 2861                                                              |
| 25 to 75          | 214                    | 2475                   | 2112                                | -2.43                                                 | -520                                                       | -6014                         | -5132                                                             |
| 75 to 150         | 214                    | 2465                   | 2126                                | -4.17                                                 | -892                                                       | -10279                        | -8865                                                             |
| 150 to 250        | 205                    | 2456                   | 2148                                | -3.34                                                 | -685                                                       | -8203                         | -7174                                                             |
| 250 to 350        | 196                    | 2442                   | 2157                                | -2.21                                                 | -433                                                       | -5397                         | -4767                                                             |
| 350 to 450        | 192                    | 2430                   | 2172                                | -1.29                                                 | -248                                                       | -3135                         | -2802                                                             |
| 450 to 550        | 183                    | 2417                   | 2190                                | -0.48                                                 | -88                                                        | -1160                         | -1051                                                             |
| 550 to 650        | 169                    | 2407                   | 2205                                | 0.21                                                  | 35                                                         | 505                           | 463                                                               |
| 650 to 750        | 152                    | 2398                   | 2230                                | 0.54                                                  | 82                                                         | 1295                          | 1204                                                              |
| 750 to 850        | 147                    | 2393                   | 2243                                | 0.66                                                  | 97                                                         | 1579                          | 1480                                                              |
| 850 to 950        | 160                    | 2392                   | 2251                                | 0.61                                                  | 98                                                         | 1459                          | 1373                                                              |
| 950 to 1050       | 165                    | 2388                   | 2247                                | 0.28                                                  | 46                                                         | 669                           | 629                                                               |
| 1050 to 1150      | 192                    | 2390                   | 2245                                | 0.04                                                  | 8                                                          | 96                            | 90                                                                |
| 1150 to 1250      | 201                    | 2392                   | 2241                                | -0.30                                                 | -60                                                        | -718                          | -672                                                              |
| 1250 to 1350      | 223                    | 2388                   | 2236                                | -0.58                                                 | -129                                                       | -1385                         | -1297                                                             |
| 1350 to 1450      | 223                    | 2392                   | 2236                                | -0.82                                                 | -183                                                       | -1961                         | -1834                                                             |
| 1450 to 1625      | 232                    | 2388                   | 2230                                | -0.88                                                 | -204                                                       | -2101                         | -1962                                                             |
| 1625 to 1875      | 241                    | 2388                   | 2232                                | -1.49                                                 | -359                                                       | -3558                         | -3326                                                             |
| 1875 to 2250      | 250                    | 2386                   | 2228                                | -2.65                                                 | -662                                                       | -6323                         | -5904                                                             |
| 2250 to 2750      | 254                    | 2393                   | 2236                                | -3.75                                                 | -952                                                       | -8974                         | -8385                                                             |
| 2750 to 3500      | 254                    | 2396                   | 2240                                | -5.96                                                 | -1514                                                      | -14280                        | -13350                                                            |
| 3500 to 4500      | 259                    | 2402                   | 2245                                | -9.55                                                 | -2473                                                      | -22939                        | -21440                                                            |
| 4500 to bottom    | 263                    | 2407                   | 2254                                | 6.77                                                  | 1780                                                       | 16295                         | 15260                                                             |
| Total flux        |                        |                        |                                     |                                                       | -6970                                                      | -71162                        | -64601                                                            |

because of production and consumption effects. Esaias *et al.* (7) and Platt and Sathyendranath (8) provide examples of the complexity of upper ocean processes that enter into the cycle.

Brewer and Dyrssen (1) made use of TTO North Atlantic data (9) to estimate roughly the CO<sub>2</sub> flux, but encountered several problems. The nearest TTO station to the Florida Straits was at 28°45'N, 79°46'W, some 120 miles north of the section studied by Roemmich and Wunsch (4) and contained only two data points. Furthermore, the TTO CO<sub>2</sub> data set contains errors probably resulting from the effect of dissolved organic matter on the observations (10). Our data were obtained both by titration and by coulometry (11) and thus we avoided this problem. The analytical accuracy of the procedures was estimated to be  $\pm 3 \mu eq/kg$  (eq, equivalents) in alkalinity, ±7 µmol/kg in total CO<sub>2</sub> (titration) and  $\pm 5 \mu mol/kg$  in total CO<sub>2</sub> (coulometry).

We have used our data to provide estimates of concentration in several depth and isopycnal ranges and combined these with published estimates of mass transport (Table 1). The transport estimates are those of Hall and Bryden (3); a full inverse analysis of the Roemmich and Wunsch data set (4) by Rintoul (12) yielded virtually identical results for  $O_2$ , but an analysis was not done for  $CO_2$ . The principal errors in estimating the flux arise from both the layer velocities and from the coarse section averaging.

The inferred total CO<sub>2</sub> flux (Table 1) is at first surprising; the northward transport of CO<sub>2</sub> by the ocean across this latitude is 63.9  $\times$  10<sup>6</sup> mol/s, the southward transport is 64.6  $\times$  10<sup>6</sup> mol/s and thus the net CO<sub>2</sub> flux is 0.7  $\times$  10<sup>6</sup> mol/s or 0.26 gigaton of C per year (13). The flux is small compared to the present annual rate of production of CO<sub>2</sub> from fossil fuels of about 5.5 gigatons of C per year. For O<sub>2</sub> the equivalent transports are 4.89  $\times$  10<sup>6</sup> mol/s northward and 6.97  $\times$ 10<sup>6</sup> mol/s southward; these values yield a net flux of 2.08  $\times$  10<sup>6</sup> mol/s, or some three times the net CO<sub>2</sub> flux.

The difference in the net  $CO_2$  and  $O_2$ fluxes results from the strong enrichment of  $CO_2$  (and nutrients) in the deep flow in the Florida Straits (Fig. 1) and the strong depletion of  $O_2$  because of respiratory processes. Advection by the Gulf Stream northward results in strong cooling of surface waters (14) and exposure of the  $CO_2$ -rich,  $O_2$ -poor waters beneath to the atmosphere. [The flow from the Florida Straits contributes some 90% of the  $CO_2$  and nutrient input to the surface layers of the North Atlantic. The clear waters of the Gulf Stream drive the plankton blooms (7).] On surface exposure of water with high  $CO_2$  partial pressures, gas is released to the atmosphere; cooling by 9.1°C (2–4); gas solubility increases for  $CO_2$ by approximately 3.75%. These effects are of opposite sign, and of apparently almost equal magnitude so that the net flux of CO<sub>2</sub> is quite small. For  $O_2$  the above effects are additive and result in a large net flux: exposure of water with low partial pressures of O<sub>2</sub> results in atmospheric O<sub>2</sub> invasion, and cooling further enhances the solubility. These data confirm that both biological and physical cycles of the ocean are important in planetary CO<sub>2</sub> balance. We predict that surface evasion of CO<sub>2</sub> from the North Atlantic will occur in winter. Although a larger net residual southward transport cannot be absolutely ruled out, we believe that the picture we pain? of opposing effects must intuitively be the case and will yield a small net signal.

The calculation of the alkalinity balance shows transports of  $71.7 \times 10^6$  eq/s northward, and  $71.2 \times 10^6$  eq/s southward. The difference of  $0.5 \times 10^6$  eq/s northward is again indistinguishable from zero but suggests that the North Atlantic is a small alkalinity sink. The balance however reflects the interaction of processes quite different than for CO<sub>2</sub>; transfer at the air-sea interface does not apply for alkalinity but depends on processes involving CaCO<sub>3</sub> uptake and dissolution and changes in N metabolism (15).

Our calculation, most emphatically, does not mean that oceanic uptake of the fossil fuel signal is small. Transport of fossil fuel  $CO_2$  is taking place in the surface flows and is extractable from the  $CO_2$  flux signal (16). Deep waters in the North Atlantic that have radiochemical and fossil fuel burdens (17) have yet to reach 25°N in other than the deep western boundary current, and thus the present-day balance is artificially poised in time. Interconversion of CO<sub>2</sub> between gaseous and dissolved organic C (18) also occurs, and the magnitude of this cycle is currently controversial (19).

Our estimates of CO<sub>2</sub> transport for a single ocean basin are consistent with the global exchanges between sea and air provided by Pearman et al. (20). These exchanges are calculated to have changed by a factor of 2 in the last 40 years. Unraveling signals such as these is essential for knowledge of the planetary C cycle and will be a principal focus of the Joint Global Ocean Flux Study (JGOFS) (21) in the decade ahead. The large absolute fluxes and the small net signal present enormous challenges to scientists in this field.

(1980). Bryden and Hall made use of International Geophysical Year data (1957) in computing geostrophic flows. Their analysis yielded a heat flux of 1.1  $\times$  10<sup>15</sup> W. Roemmich and Wunsch (4) in an inverse analysis of a detailed eddy resolving section (1981) obtained a flux of 1.2 × 10<sup>15</sup> W.
3. M. M. Hall and H. L. Bryden, *Deep Sea Res.* 29,

- 339 (1982).
- D. Roemmich and C. Wunsch, ibid. 32, 619 (1985). The oceanic transport of material is vast by continental geochemical standards. The flow of the world's rivers combined is approximately 1.6 Sv; the 80-km-wide Florida Straits alone transports 30 Sv  $(1 \text{ Sv} = 10^6 \text{ m}^3/\text{s}).$
- 6. A. Oort and T. von der Haar, J. Phys. Ocean. 6, 781 (1976).
- W. E. Esaias, G. C. Feldman, C. R. McClain, J. W. Elrod, *Eos* 67, 835 (1986).
- 8. T. Platt and S. Sathyendranath, Science 241, 11613 (1988).
- 9. Transient Tracers in the Ocean (TTO): North Atlantic Study (SIO Ref. 86-15, Physical Chemical Oceanographic Data Facility, Scripps Institution of Oceanography, La Jolla, CA, 1981). A. L. Bradshaw and P. G. Brewer, *Mar. Chem.* 23,
- 10. 69 (1988); *ibid.* 24, 155 (1988).
  11. K. M. Johnson *et al.*, *ibid.* 16, 61 (1985).
- 12. S. Rintoul, thesis, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution (1988).
- W. S. Broccker and T. H. Peng, in *Tracers in the Sea* (Eldigio Press, Palisades, NY, 1982), pp. 1–690.
   A. F. Bunker, *Mon. Weather Rev.* 104, 1122 (1976).

- P. G. Brewer and J. C. Goldman, *Limnol. Oceanogr.* 21, 108 (1976); J. C. Goldman and P. G. Brewer, *ibid.* 25, 352 (1980).
- P. G. Brewer, Geophys. Res. Lett. 5, 997 (1978).
   See papers in the TTO collection, J. Geophys. Res.
- 90, 6903 (1985) and in (9) 18.
- Y. Sugimura and Y. Suzuki, Mar. Chem. 24, 105 (1988); G. Jackson, Oceanography 1, 28 (1988). E. T. Peltzer and P. G. Brewer, unpublished data.
- DOC data obtained show a high surface value of 175 µmol of C per kilogram and a low of 75 µmol of C per kilogram. The data are linearly related with the apparent O<sub>2</sub> utilization signal. 20. G. L. Pearman, P. Hyson, P. J. Fraser, J. Geophys.
- Res. 88, 3581 (1983).
- 21. The Joint Global Ocean Flux Study (JGOFS) is a decade-long international experiment in which satellite observations of ocean color and sampling in oceanic cruises are coordinated.
- 22. We thank D. Shafer, A. Fleer, N. Hayward, and A. Bradshaw for help, and C. Wunsch and H. Bryden for critical comment. The thesis of S. Rintoul and his analysis of the nutrient cycles further influenced our work. We are grateful to A. Edwards for manuscript preparation. Our work was supported by the National Science Foundation under grants OCE87-1461 (PGB); by a Bourse Lavoisier from the Ministère des Affaires Etrangères (C.G.); and by a grant from the WHOI Coastal Research Center to support the visit of D.D. Contribution 7109 from the Woods Hole Oceanographic Institution.

24 May 1989; accepted 1 September 1989

## A Devonian Spinneret: Early Evidence of Spiders and Silk Use

WILLIAM A. SHEAR, JACQUELINE M. PALMER, Jonathan A. Coddington, Patricia M. Bonamo

A nearly complete spider spinneret was found in Middle Devonian rocks (about 385 to 380 million years old) near Gilboa, New York. This is the earliest evidence yet discovered for silk production from opisthosomal spigots, and therefore for spiders. Two previously known Devonian fossils described as spiders lack any apomorphies of the order Araneae and are probably not spiders. The spigots of the Devonian spinneret resemble those of members of the living suborder Mesothelae, but the number of spigots and their distribution are like those of members of the suborder Opisthothelae, infraorder Mygalomorphae. The Devonian spider belonged to a clade that may be the sister group of all other spiders, of Mesothelae, or of Opisthothelae.

PIDERS (ARTHROPODA: CHELICERata: Araneae) are among the most important terrestrial predatory animals. Among the arachnids, they alone produce silk from opisthosomal (abdominal) glands that open through modified setae called spigots, which in turn are located on reduced abdominal appendages, the spinnerets. This character complex is the most diagnostic apomorphy of spiders. We report here on the earliest evidence yet discovered in the fossil record of spinnerets, of spiders themselves, and of silk production by animals.

Although two spider fossils have been reported from the Devonian Period, in neither of these cases can any apomorphies of the order Araneae be demonstrated. Paleocteniza crassipes (1), from the Lower Devonian (404 million years old?) Rhynie Chert, is a minute, crumpled exoskeleton that is undoubtedly arachnid, but is more likely from one of the trigonotarbids that are the most abundant animals in that deposit. Spinnerets, characteristic patterns of leg jointing, eye arrangement, and other spider apomorphies that are potentially present even in very small, immature animals cannot be detected in this fossil or are certainly not there (2). Archaeometa devonica (3), from the slightly later Alken-an-der-Mosel, West Ger-

**REFERENCES AND NOTES** 

<sup>1.</sup> P. G. Brewer and D. Dyrssen, paper presented at the First Joint Global Ocean Flux Study (JGOFS) meeting, Paris, 17 to 20 February 1987.

<sup>2.</sup> H. L. Bryden and M. M. Hall, Science 207, 884

W. A. Shear, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, and American Museum of Natural History, New York, NY 10024. J. M. Palmer, Museum of Comparative Zoology, Har-vard University, Cambridge, MA 02138.

J. A. Coddington, Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560. P. M. Bonamo, Center for Evolution and the Paleoenvi-ronment, State University of New York, Binghamton,

NY 13901.