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Carbon Dioxide Transport by Ocean Currents at 
25"NLatitude in the Atlantic Ocean 

Measured concentrations of C02, 02 ,  and related chemical species in a section across 
the Florida Straits and in the open Atlantic Ocean at approximately 25"N, have been 
combined with estimates of oceanic mass transport to estimate both the gross 
transport of C02 by the ocean at this latitude and the net COZ flux from exchange with 
the atmosphere. The northward flux was 63.9 x lo6moles per second (moWs); the 
southward flux was 64.6 x lo6mows. These values yield a net C02 flux of 0.7 x lo6 
mows (0.26 r 0.03 gigaton of C per year) southward. The North Atlantic Ocean has 
been considered to be a strong sink for atmospheric C02, yet these results show that 
the net flux in 1988 across 25"N was small. For Oz the equivalent signal is 4.89 x lo6 
mows northward and 6.97 x lo6mows southward, and the net transport is 2.08 x lo6 
mows or three times the net C02 flux. These data suggest that the North Atlantic 
Ocean is today a relatively small sink for atmospheric COZ, in spite of its large heat 
loss, but a larger sink for O2 because of the additive effects of chetnical and thermal 
pumping on the COZ cycle but their near equal and opposite effects on the COZ cycle, 

HE NORTH ATIANTIC OCEAN HAS 

been widely regarded as an impor- 
tant C 0 2  sink and heat source for the 

atmosphere. The large-scale circulation con- 
sists of both the horizontal wind-driven a r e  
circulatio~l and the vertically overturning 
ther~nohali~ie-drivencirculation. Both act in 
concert to transport heat and trace green- 
house gases to latitudes where disequilibri- 
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a manner identical to that used for heat 
tratisport W O L I I ~yield a very small net C 0 2  
flux. 

The section is the same as that used by 
others for the estimate of heat fins (Z),and 
we made svecific use of the oceanic trans- 
ports of water derived from these studies to 
compute the chemical tluxes. The work was 
carried out on the Research Vessel Oi-raizris 
Cn~ise 205 in November 1988 at five sta- 
tions across the Florida Straits and four 
stations in the open Atlantic (Fig. 1). Time 
did not vermit a full oceanic section, and 
thus interpolation along density surfaces 
sampled by others (2-3) was necessary. 

For the North Atlantic. the earlier calcula- 
tions (2-4) have shown that the northward 
flow of 30 Sverdrups (Sv) (5), principally 
through the Florida Straits, has a mean-
temperature of 18.S°C, and that the com- 
pensating return flow has a lnean tempera- 
ture of 9.TC. This difference provides the 
observed net heat flux of -1.1 x 1015 W. 
Although some uncertainty still surrounds 
this estimate (6) ,on the basis of atmospheric 
observations, the oceanic data are compel- 
ling. 

The ecluivalent calculation for trace gases 
is more difficult because of the technical 
difficulty of obtaining measurements and 
the enrichme~lt of gases in the cold, deep 
flows \here  mass transports are less easily 
deternlined. Moreover Lest is an internally 
conserved property of sea water, whereas 
the biogenic gases are transf'erred both at the 
sea surface, because of thermal, partial pres- 
sure, and biogenic processes, and internally, 
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Station because of production and consumption ef- 
6 5 4 3 1 fects. Esaias et a/ .  (7)and Platt and Sathven- 

\ ,  

dranath ( 8 ) provide examples of the com- 
plexity of upper ocean processes that enter 
into the cjlcle. 

Brewer and Dyrssen (1) made use of TTO 
North Atlantic data (9) to estimate roughly 
the C 0 2  flux, but encountered several pFob- 
lems. The nearest TTO station to the Flori- 
da Straits was at 28"45'N, 79"46'W, some 
120 miles north of the section studied by 
Roemmich and Wunsch (4) and contained 
only two data points. Furthermore, the 
TTO COz data set contains errors probably 
resulting from the effect of dissolved organic 
matter on the observations (10). Our data 
were obtained both by titration and by 
coulometrv,~(11)

r 
and thus we avoided this 

problem. The analytical accuracy of the pro- 
Total CO, (pmollkg) Longitude cedures was estimated to be *3 peqlkg (eq, 

Fig. 1.Oceanic total C:02 concentrations (A) for station 9 in the open Atlantic at 24"3StN, 64"l'W and equivalents) in alkalinity, t 7  pmoukg in 
(8) for the Florida Straits section (contours arc in micromoles per kilogram). total COz (titration) and t 5  mollk kg in 

total C 0 2  (coulometry) . 
We have used our data to provide esti- 

Table 1. Estimates of oceanic chemical properties in sclcctcd depth intervals for the Florida-Bahamas mates of concentration in several depth and 
section and for the 25"N section based upon four stations in the western basin. The layer transports are isopycnal ranges and combined these with 
as calculated in (2); the negative sign indicates southward flow; Alk, alkalinity. published estimates of mass transport (Table 

1).The transport estimates are those of Hall Property 
and Bryden (3);a full inverse analysis of the 

OZ 
(pmoV 
litcr) 

Alk 
(peql 
liter) 

CO, 
(pmoll 
liter) 

Trans-
port 

(10%'ls) 

0 2  
( lo3molls) 

Alk 
(10' C ~ I S )  

C 0 2  
(10' molls) 

Roemmich and Wunsch data set (4) by 
Rintoul (12) vielded virtuallv identical re- 

~ , ,  

sults for 02, but an analysis was not done for 
C02.  The principal errors in estimating the 

0 to  25 flux arise from both the laver velocities and 
25 to  75 
75 to  150 

150 to  250 
250 to  350 

from the coarse section averaging. 
The inferred total C 0 2  flux (Table 1) is at 

first surprising; the northward transport of 
350 to  450 C 0 2  by the ocean across this latitude is 63.9 
450 to  550 
550 to  650 
650 to  750 
750 to  850 

x lo6 molls, the southward transport is 
64.6 x 10" molls atid thus the net C 0 2  flux 
is 0.7 x 10" mol/s or 0.26 gigaton of C per 

Total flux year (13).The flux is small compared to the 
iresent annual rate of production of COz 

0 to  25 from fossil fuels of about 5.5 gigatons of C 
25 to  75 per year. For O2 the equivalent transports 
75 to  150 are 4.89 x lo6molls northward and 6.97 x 

150 to  250 
250 to  350 
350 to  450 
450 to  550 

lo6 molls southward; these values yield a 
net flux of 2.08 x lo6mows, or some three 
times the net C 0 2  flux. 

550 to  650 The difference in the net C 0 2  and O2 
650 to  750 
750 to  850 
850 to  950 
950 t o  1050 

fluxes results from the strong enrichment of 
COz (and nutrients) in the deep flow in the 
Florida Straits (Fig. 1) and the strong deple- 

1050 to  1150 tion of O2 because of respiratory processes. 
11 50 to  1250 Advection by the Gulf Stream northward 
1250 to  1350 
1350 to  1450 
1450 to  1625 
1625 to  1875 

results in strong cooling of surface waters 
(14) and exposure of the COz-rich, 02-poor 
waters beneath to the atmosphere. [The 

1875 to  2250 flow from the Florida straits- contributes 
2250 to  2750 
2750 to  3500 
3500 to  4500 
4500 to  bottom 
Total flux 

some 90% of the COz and nutrient input to 
the surface layers of the North Atlantic. The 
clear waters bf  the Gulf Stream drive the 
plankton blooms (i').]On surface exposure 
of water with high C 0 2  partial pressures, 
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gas is released to the atmosphere; cooling by 
9.1°C (2-4); gas solubility increases for C02 
bv a~vroximatelv 3.75%. These effects are 
i 	,I 

of opposite sign, and of apparently almost 
equal magnitude so that the net flux of C 0 2  
is quite small. For O2 the above effects are 
additive and result in a large net flux: expo- 
sure of water with low partial pressures of 
O2 results in atmospheric O2 invasion, and 
cooling further enhances the solubility. 
These data confirm that both biological and 
physical cycles of the ocean are important in 
planetary C 0 2  balance. We predict that sur- 
face evasion of C 0 2  from the North Atlantic 
will occur in winter. Although a larger net 
residual southward tranmort cannot be ab- 
solutely ruled out, we believe that the pic- 
ture we pain? of opposing effects must intu- 
itively be the case and will yield a small net 
signal. 

The calculation of the alkalinity balance 
shows transports of 71.7 x lo6 eqls north- 
ward, and 71.2 x lo6eqls southward. The 
difference of 0.5 x lo6 eqls northward is 
again indistinguishable from zero but sug- 
gests that the North Atlantic is a small 
alkalinity sink. The balance however reflects 
the interaction of processes quite different 
than for C02 ;  transfer at the air-sea interface 
does not apply for alkalinity but depends on 
processes involving CaC03 uptake and dis- 
solution and changes in N metabolism (15). 

Our calculation, most emphatically, does 
not mean that oceanic uptake of the fossil 
fuel signal is small. Transport of fossil fuel 
C 0 2  is taking place in the surface flows and 
is extractable from the C 0 2  flux signal (16). 
Deep waters in the North Atlantic that have 
radiochemical and fossil fuel burdens (17) 
have pet to reach 25"N in other than the 
deep western boundary current, and thus 
the-present-day balance is artificially poised 
in time. Interconversion of C 0 2  between 
gaseous and dissolved organic C (18) also 
occurs, and the magnitude of this cycle is 
currently controversial (19). 

Our estimates of C 0 2  transport for a 
single ocean basin are consistent with the 
global exchanges between sea and air pro- 
vided by l'earman rt al. (20). These ex-
changes are calculated to have changed by a 
factor of 2 in the last 40 years. Unraveling 
signals such as these is essential for knowl- 
edge of the planetary C cycle and will be a 
principal focus of the Joint Global Ocean 
Flux Study (JGOFS) (21) in the decade 
ahead. The large absolute fluyes and the 
small net signal present enormous challenges 
to scientists in this field. 
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A Devonian Spinneret: Early Evidence of Spiders and 
Silk Use 

A nearly complete spider spinneret was found in Middle Devonian rocks (about 385 to 
380 million years old) near Gilboa, New York. This is the earliest evidence yet 
discovered for silk production from opisthosomal spigots, and therefore for spiders. 
Two previously known Devonian fossils described as spiders lack any apomorphies o f  
the order Araneae and are probably not  spiders. The spigots o f  the Devonian spinneret 
resemble those of members o f  the living suborder Mesothelae, but the number of 
spigots and their distribution are like those of members of the suborder Opisthothelae, 
hfraorder Mygalomorphae. The Devonian spider belonged t o  a clade that may be the 
sister group of all other spiders, of  Mesotheiae, or of Opisthothelae. 

(AKTEIKOPOI)A:CHELICEK- in the fossil record of spinnerets, of spiders SPIDEKS 

ata: Araneae) are among the most 
important terrestrial predatory ani-

mals. Among the arachnids, they alone pro- 
duce silk from opisthosomal (abdominal) 
glands that open through modified setae 
called spigots, which in turn are located on 
reduced abdominal appendages, the spin- 
nerets. This character complex is the most 
diagnostic apomorphy of spiders. We report 
here on the earliest evidence yet discovered 
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themselves, and of silk production bj7 ani- 
mals. 

Although two spider fossils have been 
reported from the Devonian Period, in nei- 
ther of these cases can any apomorphies of 
the order Araneae be demonstrated. llaleor-
teniza cvassiprs (I), from the Lower Devoni- 
an (404 million years old?) Rhynie Chert, is 
a minute, crumpled exoskeleton that is un- 
doubtedly arachnid, but is more likely from 
one of the trigonotarbids that are the most 
abundant animals in that deposit. Spinner- 
ets, characteristic patterns of leg jointing, 
eye arrangement, and other spider apomor- 
phies that are potentially present even in 

very immature 	 be 
detected in this fossil or  are certainly not 

there ('1. drvorlica from the 
slightly later Alken-an-der-Mosel, West Ger- 
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