restored in the retinotectal system (17) and

in

other regions of the CNS (18) of ana-

miotes after injury. Synaptic interactions
have also been shown in mammals between
grafted fetal or neonatal neurons and nerve
cells in various regions of the host CNS
including the tectum (19). We have now
shown that adult mammalian CNS neurons
have the capability to form functioning syn-
apses with neurons in distant CNS regions
after regeneration of their cut axons. Wheth-
er or not such synapses can be formed in
sufficient density and with appropriate
specificity to subserve behavioral function
can now be explored.

1.
2.
3.

4.
5.
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Protection of Dentate Hilar Cells from Prolonged
Stimulation by Intracellular Calcium Chelation

HELEN E. SCHARFMAN* AND PHILIP A. SCHWARTZKROINT

Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration
only of those cells that lack immunoreactivity for the calcium binding proteins
parvalbumin and calbindin. In order to test the hypothesis that calcium binding
proteins protect against the effects of prolonged stimulation, intracellular recordings
were made in hippocampal slices from cells that lack immunoreactivity for calcium
binding proteins. Calcium binding protein—negative cells showed electrophysiological
signs of deterioration during prolonged stimulation; cells containing calcium binding
protein did not. When neurons without calcium binding proteins were impaled with
microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to
diffuse into the cells, these cells showed no deterioration. These results indicate that, in
a complex tissue of the central nervous system, an activity-induced increase in
intracellular calcium can trigger processes leading to cell deterioration, and that
increasing the calcium binding capacity of a cell decreases its vulnerability to damage.

ALCIUM-MEDIATED PROCESSES IN-
side neurons are critical to a variety
of cell functions (1). Intracellular
free Ca’" is normally maintained at a low
level, but the level may increase significantly
by events that release intracellular stores of
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bound Ca** or that allow Ca?* flux across
the membrane. Large increases of intracellu-
lar Ca®* are thought to occur during peri-
ods of excessive neuronal excitation and
trigger processes that lead to cell death (2).
Specific cell types appear to be especially
vulnerable to damage under conditions that
facilitate Ca®* influx via voltage- or neuro-
transmitter-gated  channels. Intracellular
Ca’* binding proteins are important in reg-
ulating free Ca?* (3), and their capacity to
buffer intracellular Ca?* may be important
in determining cell vulnerability under con-
ditions associated with Ca*>* influx.
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In in vivo experiments on rat dentate
gyrus, prolonged stimulation of the major
afferent pathway to dentate granule cells
(the perforant path) was shown to lead to
the histological degeneration of specific cell
populations in the adjacent hilar region,
without damage to the granule cells (4). The
hilar cells that degenerated were the large
spiny cells called mossy cells and a subpop-
ulation of aspiny local circuit neurons (inter-
neurons) that are somatostatin immunoreac-
tive (4, 5). The mechanisms underlying the
selective vulnerability of the mossy cells and
the somatostatin-immunoreactive interneu-
rons are unknown. However, immunocyto-
chemical studies have shown that the den-
tate neurons that survive the period of stim-
ulation (granule cells and some interneu-
rons) contain significant levels of a Ca®*
binding protein (CaBP)—either parvalbu-
min or calbindin (Dygk) (9). In contrast, the
vulnerable hilar cells—the mossy cells and
other interneurons—contain neither CaBP
(5). Does low Ca*" binding capacity under-
lie the vulnerability of these hilar cells, and
can vulnerable neurons be rendered resistant
by increasing their Ca** binding capacity
experimentally? These questions were exam-
ined by means of a model of stimulation-
induced cell damage (4, 5) modified for the
hippocampal slice preparation. We assessed
the effects of stimulation on CaBP-negative
hilar cells impaled with microelectrodes

filled with or without the Ca®* chelator
BAPTA [1,2 bis-(2-aminophenoxy)ethane-
N,N,N',N'-tetraacetic acid] (6). BAPTA
was chosen in preference to other chelators,
such as EGTA, since BAPTA is faster acting,
is highly specific for Ca** as opposed to
other cations, and has little nonspecific effect
on cell function over the short periods of
our experiments (7).

Hippocampal slices were prepared and
maintained as described (8). Either granule
cells, interneurons, or mossy cells were re-
corded intracellularly. Granule cells, inter-
neurons, and mossy cells were easily distin-
guished on the basis of their locations and
different physiological properties, properties
that had been previously correlated with
intracellular staining to define cell morphol-
ogy (9). In addition to intracellular record-
ing, an extracellular recording electrode was
used to simultaneously monitor the granule
cell population response to stimulation of
the perforant path (10). The pattern of
sustained perforant path stimulation was
similar to the “intermittent” pattern of stim-
ulation used in similar studies of cell death
performed in vivo (4, 11).

Simultaneous extracellular and intracellu-
lar recordings from granule cells demon-
strated that, after 10 to 90 min of intermit-
tent stimulation, there were no electrophysi-
ological signs of deterioration in granule
cells (n = 16; Table 1). Electrophysiological

Table 1. Effects of stimulation on the RMP, R;,, and AP amplitude in neurons of the fascia dentata
impaled with or without BAPTA in the microelectrodes, before and 10 to 30 min after continuous
intermittent (71) stimulation. For all measures with BAPTA-containing electrodes, stimulation was
begun 20 to 30 min after cell impalement. Granule cells and insensitive interneurons were stimulated
until there was a permanent reduction in paired-pulse inhibition (up to 90 min). Mossy cells and
sensitive interneurons were stimulated until there were electrophysiological signs of deterioration (up to
10 min) if BAPTA-containing electrodes were not used and for at least 10 min when BAPTA-
containing electrodes were used. Values are the means + SEM.

Cel Before or AP
after RMP (mV) R, (MQ) amplitude
pe stimulation (mV)

Granule cells Before —-764 1.2 675+ 4.6 85.1 +2.8
(no BAPTA) After —83.8 = 1.0% 90.6 £ 6.0* 80.3 +2.7
(n = 16)

Insensitive Before -62.7 = 3.8 1382+ 7.1 68.0 = 4.3
interneurons After -70.3 = 3.8 158.0 = 6.9 682 + 4.1
(no BAPTA)

(n = 10)

Mossy  cells Before -64.8+ 19 888+ 6.7 79.0 £5.2
(no BAPTA) After —-32.5 +6.2% 13.3 + 20.0* 18.5 = 9.4*
(n=28)

Mossy cells Before -64.3 £ 3.0 940+ 8.3 79.7 £ 0.9
(BAPTA) After —66.5 = 6.1 933+ 6.0 81.8+12
(n=175)

Sensitive Before —-66.8 = 2.6 1012+ 72 59.8 = 4.6
interneurons After -21.4 * 6.0* 45.2 + 20.2* 18.2 = 9.4*
(no BAPTA)

(n=4)

Sensitive Before -67.2 106.0 71.8
interneurons After -69.8 100.8 73.0
(BAPTA)

(n=2)

*Difference between before and after stimulation measures statistically significant, P < 0.05, ¢ test.

258

indications of deterioration were defined as
(i) over a 20-mV depolarization from pre-
stimulation resting membrane potential
(RMP) that persisted after stimulation
ceased (until the end of the experiment,
from 30 min to 2 hours after stimulation
stopped), (ii) a 50% or more loss of input
resistance (Ry,) (12), and (iii) a 30-mV or
more decrease in action potential (AP) am-
plitude. In contrast to granule cells, mossy
cells were extremely sensitive to stimulation
and had a much lower threshold for stimu-
lus-evoked APs than granule cells. When
tested with intermittent stimulation, all
mossy cells depolarized dramatically (up to
60 mV) within seconds of the first 20-Hz
stimulus train; in addition, AP amplitude
decreased (Table 1) and AP duration in-
creased. Of eight cells tested, only two cells
were able to repolarize and recover healthy
AP amplitude after a brief period (less than
5 min) of intermittent stimulation. These
two mossy cells were located extremely far
(over 1.5 mm) from the stimulating elec-
trode relative to the other, more sensitive
mossy cells, and this proximity may have
contributed to their lesser sensitivities.
However, further intermittent stimulation
of these two mossy cells (13 and 19 min,
respectively) led to their depolarization
without subsequent recovery; AP amplitude
and cell R, decreased concomitantly. In
these eight experiments, there was no
change in the amplitude or waveform of the
granule cell population spike at the time
when mossy cells showed electrophysiologi-
cal deterioration. Thus, cells that had been
shown, histologically, to degenerate after
sustained stimulation in in vivo experiments
(that is, mossy cells) also showed electro-
physiological signs of deterioration after
sustained stimulation in vitro. In contrast,
cells that did not suffer histological damage
after sustained stimulation in vivo (that is,
granule cells) did not show electrophysio-
logical signs of deterioration when recorded
during sustained stimulation in vitro.
When mossy cells were impaled with mi-
croelectrodes containing BAPTA, they were
not as sensitive to intermittent stimulation
as when impaled with control pipettes
(n = 5; Table 1 and Fig. 1) and were also
less sensitive to single stimuli (Fig. 1). Dur-
ing an initial 20 to 30 min of cell impale-
ment with BAPTA-containing electrodes
(before intermittent stimulation), mossy cell
properties were monitored; there were no
changes in RMP, AP amplitude or wave-
form, or R;,. Recording with BAPTA elec-
trodes in granule cells (n = 3) and CA3
pyramidal cells (n = 10), however, showed
that processes known to involve intracellular
Ca®" increases (for example, spike frequency
adaptation, or the afterhyperpolarization af-
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ter a burst of APs) decreased 20 to 30 min
after impalement, suggesting that 20 to 30
min were sufficient to allow for diffusion of
BAPTA into the impaled cell. Therefore,
mossy cells were activated via intermittent
perforant path stimulation 20 to 30 min
after impalement. These mossy cells impaled
with BAPTA electrodes did not depolarize
(or depolarized only slightly) during the
initial segment of 20-Hz stimulus trains, and
actually hyperpolarized during 2-Hz stimu-
lus trains (Fig. 1B). After 10 min of inter-
mittent stimulation, these cells showed no
deterioration by electrophysiological crite-
ria. This response to intermittent stimula-
tion of CaBP-negative cells that were im-
paled with BAPTA-containing electrodes
was in contrast to the response obtained
from comparable cells impaled with micro-
electrodes containing no Ca** chelator and
was similar to the response of CaBP-positive
cells such as granule cells.

Two mossy cells that were recorded with
BAPTA-containing electrodes were stimu-
lated intermittently soon after impalement
(at 10 min, before substantial BAPTA diffu-
sion occurred) and 30 min after impalement
(Fig. 1). Their responses to the first period
of intermittent stimulation were similar to
the responses of mossy cells impaled with-
out BAPTA-containing microelectrodes
(Fig. 1A). However, when the same stimuli
were delivered 30 min after impalement, the
same mossy cells were relatively resistant to
stimulus-induced depolarization, decreases
in AP amplitude, broadening of APs, and
loss of R;, (Fig. 1B).

Other neurons of the dentate hilus that
were sensitive to sustained intermittent
stimulation had electrophysiologic charac-
teristics of interneurons. They were infre-
quently encountered and difficult to hold in
stable penetrations. Like the mossy cells,
these sensitive interneurons depolarized,
lost Rjn, and deteriorated during sustained
intermittent stimulation (n = 4; Table 1).
Some interneurons in the hilus responded to
intermittent stimulation like the granule
cells; these insensitive interneurons did not
depolarize, lose R;n, or deteriorate during
stimulation (# = 10; Table 1). No immuno-
cytochemistry was performed in these ex-
periments, so it was not possible to deter-
mine whether the sensitive interneurons
lacked Ca?* binding proteins, or whether
they contained somatostatin, as experiments
performed in vivo would suggest (4, 5).
However, it was possible to differentiate the
two populations of interneurons in another
way. The interneurons that were sensitive to
sustained intermittent stimulation had a
very low threshold for AP generation
evoked by perforant path stimulation,
whereas the insensitive interneurons had a
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train 1

Fig. 1. Effects of intermit-
tent stimulation on mossy
cells impaled with intracellu-
lar recording electrodes con- A
taining BAPTA. (A) Re-
sponses  to  intermittent
stimulation (11) 10 min af-
ter impalement. During the
2-Hz period, the cell fired 1

End
2-Hz
train 1
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train 1 train 1
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more APs per stimulus than
during control stimulation g
(compare A; and A,). Dur-
ing the 20-Hz period (A;
through Ag), the cell depo-

larized dramatically and APs
decreased in amplitude and T ,bz
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broadened; by the end of Tt T
the 20-Hz period, the re- ) :
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only a small depolarization (Ag). After the 20-Hz stimulus train stimulation was stopped, the cell
eventually recovered its membrane potential, AP amplitude and waveform, and response to stimulation
[see trace 1 in (B)]. The RMP before stimulation is indicated by the dotted line. Stimulus artifacts are
marked by the closed circles; some APs are truncated by digitization. (B) Thirty minutes after
impalement, the same mossy cell shown in (A) was stimulated with the same stimulus paradigm. During
the 2-Hz train, there was very little increase in the number of APs per stimulus and the cell
hyperpolarized (compare RMP at start of traces B, and B,). During the 20-Hz train there was a small
initial depolarization (Bs); the cell repolarized quickly and remained at prestimulation RMP for the
remainder of the 5-s period (B4 and Bs). When the 2-Hz stimulation was continued (Bg), the cell
hyperpolarized. Alternate 2-Hz and 20-Hz stimulus trains were continued for 15 min, with the same
responses to 2-Hz and 20-Hz stimulation as shown. A very small increase in stimulus intensity required
to reach threshold for AP generation [evident on comparison of the response to the first stimulus in (A)

and (B)] was observed in four of five cells.

threshold that was similar to granule cells.
Two sensitive interneurons with low thresh-
olds were impaled with microelectrodes
containing BAPTA, and intermittent stimu-
lation was delivered 30 min after impale-
ment. Intermittent stimulation led to tran-
sient, minimal depolarizations (up to 4 mV)
and cells completely repolarized after inter-
mittent stimulation; there were no signifi-
cant changes in Ry, (Table 1).

The mechanism of the protective effect of
BAPTA is most likely the chelation of intra-
cellular free Ca®", which would limit the rise
in Ca?* during stimulation. Calcium levels
may rise during stimulation because of the
release of free Ca®* from intracellular stores,
or as a result of Ca>" influx through voltage-
dependent or receptor-linked Ca** channels.
To test whether the deterioration was me-
diated by N-methyl-p-aspartate (NMDA)
channels, as suggested by other studies (2),
we carried out two manipulations. In ten
experiments, extracellular Mngr concentra-
tion was raised to 2 mM, a level more
effective in blocking NMDA-gated channels
than our baseline level of 1 mM (13). In two
other experiments, the specific NMDA re-
ceptor antagonist DL-amino-phosphonoval-
erate (APV) (100 wM) (14) was added to
our standard medium. Both manipulations
blocked the damaging effects of intermittent
stimulation on electrophysiologically char-
acterized mossy cells, demonstrating that the
Ca’*-induced cell deterioration was due to
influx via NMDA-gated channels, which
were likely opened by the high level of

excitatory input produced by perforant path
stimulation (15).

In summary, we have used the Ca®* che-
lator BAPTA to reduce the damaging effects
of sustained stimulation on cells found in
the hilus of the fascia dentata that appear to
lack Ca®* binding proteins. Since we have
no way of assessing long-term survival of
neurons studied in our in vitro experiments,
it is not possible to state unequivocally that
electrophysiological deterioration is equiva-
lent to cell death. However, the marked and
long-lasting electrophysiological changes we
encountered have long been associated with
dying neurons and correlate well with mor-
phological studies that show death of the
same neuron populations (4, 5). Thus, we
interpret our results to suggest that effective
buffering of intracellular free Ca®>* during
periods of neuronal excitation is crucial to
cell survival. Our data indicate that in com-
plex organized central nervous system tissue,
high levels of activation of normal synaptic
connections can lead to a rise in Ca®* that
causes irreversible degenerative changes in
neuronal physiology. Supplementing the
Ca’" binding capacity of vulnerable cells can
prevent cell damage.
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" What you'll need now, I guess, is some sort of brake."
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