
Systems Analysis at the Molecular Scale 

Problems involving physiochemical phenomena on both 
the microscopic and macroscopic scales often raise similar 
sets of generic issues and questions. The complexity of 
these problems is beginning to make inoperative the 
traditional intuition-based approaches to their analysis 
and solution. The common characteristics of large, multi- 
variable, complex molecular systems call for a new, more 
systematic approach to guide theoretical and experimen- 
tal efforts. With mathematical modeling becoming an 
essential ingredient in the studies, it is argued that molec- 
ular systems analysis and especially the systematic tools of 
sensitivity analyis can play an increasingly important role 
in understanding and finding solutions to complex, chem- 
ically based problems. 

P HENOMENA HAVING A CHEMICAL ORIGIN ARE UBIQUI- 

tious, and in recent years problems of ever larger complexity 
have been receiving careful attention by the chemical commu- 

nity. In the past it was thought possible to isolate small pieces of 
large-scale problems for analysis with the hope that the results could 
be reassembled into an overall framework. Unfortunately, the 
phenomena of interest often involve strongly coupled components 
including nonlinear interactions, which require that the system 
ultimately be studied as a whole. Furthermore, macroscopic observ- 
able behavior can be directly dictated by events happening on 
ultrafast time scales on atomic dimensions. Even when these prob- 
lems can be broken down into multicomponents, each one may be a 
microcosm of high complexity. For example, molecular dynamics as 
a subcomponent of some macroscopic process such as atmospheric 
dynamics is itself a highly coupled, multivariable system. 

Problems that fall into the category described above include drug 
and catalyst design, the determination of biomolecular structure, 
reactive flow (as in the atmosphere, combustion, industrial process- 
es), and control of molecular motion. The phenomena of interest 
and the goals in such studies span a variety of seemingly unrelated 
issues. However, a number of common questions always seem to 
arise, suggesting that a family of generic tools might be transferable 
from one area to another. It is becoming increasingly more impor- 
tant to direct theoretical and experimental efforts to ultimately yield 
a computationally practical, mathematical model of the phenomena 
of interest. Such models are to be used not merely for correlation 
purposes but rather as a testing ground for new ideas and generally 
as a means to guide further research, development, and applications. 

Certainly the recent flurry of activity in biomolecular design 
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stands out as a notable example. Problems of this type have often 
been approached in the laboratory by what might best be called "mix 
and try" solutions. Unfortunately, with the large number of varia- 
bles and unknowns involved, this intuitively based approach is 
prohibitively expensive and time-consuming. Theory and modeling 
clearly play a central role in guiding such complex efforts. However, 
it is the thesis of this article that these tools alone will themselves 
become mired in a tangle of multitudinous parameters and variables 
without the establishment of a systems-based approach. The efficacy 
of this comment for physiochemical problems seems to have been 
first appreciated by the chemical kinetics and combustion communi- 
ties (1). The same tools have just as significant, if not more, 
applications at the most fundamental levels of chemical-physical 
phenomena. 

Systems techniques have a long history, primarily in the engineer- 
ing disciplines (2). Although some of the physiochemical areas of 
study mentioned above ultimately border on engineering applica- 
tions, the same perspective has equal significance at all levels, 
including that of quantum mechanics. The application of raw 
computing power alone to any of these problems does not in itself 
lead to understanding, nor does it probably lead even to a practical 
means for achieving some goal such as molecular design. Rather, the 
modeling efforts must in turn be guided by sophisticated sensitivity 
analysis techniques (1, 3) if they are to be truly useful. The judicious 
application of sensitivity analysis techniques appears to be the key 
ingredient needed to draw out the maximum capabilities of mathe- 
matical modeling with parallel experimental efforts for solving 
complex physiochemical problems. The main body of this article is 
concerned with providing a status report and drawing attention to 
the availability of these techniques, how they may be applied, and 
where it is possible to develop further analysis techniques. Sensitiv- 
ity analysis is not limited to treating problems where model 
uncertainty is prevalent; rather, full knowledge of the components 
that enter a physical model does not imply understanding of their 
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Fig. 1. Flow chart illustrating the hierarchical connection between micro- 
scopic and macroscopic variables in chemical dynamics and kinetics. Sensitiv- 
ity analysis techniques may be developed to specifically probe the parametric 
and functional interconnections between the levels of the flow chart. The 
double-headed arrows connecting elements in the flow chart imply that both 
forward and inverse questions may be explored. 
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roles, which are most often obscured by the strong coupling that 
strongly influences the actual system obsen~ables. 

This article is not intended to be an encompassing review of 
systems or of sensitivity analysis techniques in the chemical-physical 
domain, but I hope that it will provide sufficient detail to draw 
attention to their potential significance, especially in areas where 
they have not been seriously applied. The first section deals with 
sensitivity analysis tools as primarily involved with building up a 
physiochemical model, analyzing its content, and interfacing with 
laboratory observations. The second section deals with the antitheti- 
cal process of reducing full detailed models to their essential or 
lumped structure for more ready application. 

Tools of Sensitivity Analysis 
Virtually all of the phenomena discussed above may be described 

in terms of mathematical models typically with many dependent 
variables 0 (r,t), 02(r,t),  . . . and parameters a (r,t), az(r, t), . . . , 
where r denotes an appropriate set of independent coordinates and t 
is time. The output variables Oi(r,t) may be directly amenable to 
obervation in the laboratory or simply intermediate quantities such 
as quantum-mechanical wave functions. The parameters cq(r,t) may 
be distributed in space or time, or both, and may correspond, for 
example, to the presence of potentials or external fields. In other 
cases, the parameters may be constants such as diffusion coefficients 
or rate constants in chemical kinetics. All of these various dependent 
variables and parameters may be identified as arising in a hierarchical 
chain depicted in Fig. 1 ranging from phenomena at the electronic 
structure level up to observable properties of bulk media. A basic 
understanding of observable phenomena in bulk media requires an 
understanding of the underlying processes in the other boxes 
ultimately ranging down to the electronic level. This point is 
especially important if theory and modeling are to be successfully 
used to guide the design of new materials (4). A significant goal is to 
identi9 which dependent variables Oi(r,t) or parameters aj(r,t) are 
critically important, how they are interrelated, and especially how 
such quantities at different levels in Fig. 1 influence behavior at 
another level. The influence of these quantities at different levels is 
clearly evident when one is proceeding from the micro scale to the 
macro scale (that is, from the left in Fig. l ) ,  but it is also relevant in 
the opposite direction because most practical observations are 
performed at a "higher" level (that is, to the right in Fig. 1) whereas 
the desired information content is ultimately at a "lower" level. For 
example, spectroscopy and molecular beam scattering experiments 
are often performed for the purpose of their inversion to an 
intermolecular potential function. 

In some cases, the parameter space may be divided into regions 
corresponding to bifurcated behavior of the system-dependent 
variables. At this point I assume that the system of interest is not of 
this type or at least that a subregion is being treated and that one is 
concerned with its accordingly local behavior. This assun~ption is 
necessary because most sensitivity analysis studies are based on 
gradient techniques that require the existence of derivatives of the 
dependent variables with respect to the system parameters. It is 
assumed further that a physical model (at least an initial one) has 
been established, its translation into a mathematical framework 
(typically differential equations) achieved, and its solution obtained 
by an appropriate algorithm. Sensitivity analysis then comes into 
play when one is attempting to unravel the ensuing complex relation 
between the input parameters and the output observables. 

Various approaches to the latter problem might be taken, includ- 
ing the traditional avenue of rerunning a statistical ensemble of 
models with varied parameters (5) or perhaps other guided schemes 

of parameter space variations (6). Clearly an enormous amount of 
information can be generated in this fashion, and it is desirable to 
have convenient and mathematically well-defined measures of the 
system sensitivity. Gradient-based techniques, in which the sensitiv- 
ity coefficients (sometimes called densities) are defined as SOi(r,t)/ 
Sq(r',t1), have proved most convenient in this regard (1, 3, 7 ) .  The 
quantities may be interpreted as the response of the ith obsenrable at 
point r and time t with respect to a disturbance of the jth parameter 
at point r '  and time t'. This interpretation is evident from the first- 
order response SOi(r,t) to a set of explicit variations Saj(rr,t') given 

by 

SOi(r,t) 8oi(r,t) = 1 j - Gaj(rl,t') dr' d t l  , Saj(r',tr) 

Generally the emphasis in sensitivity analysis is not on the explicit 
introduction of any particular variations Sa,(r',tl) and performance 
of the integral in Eq. 1 but rather on the computation and 
examination of the sensitivity coefficients S0,(r,t)/Saj(r',t1), as they 
are independent of any special variations in the parameters. These 
coefficients provide a detailed map connecting regions of the input 
parameter space to that of the output observable space. Cases may 
arise where r and r '  are in reference to different spaces (for example, 
with r' being the n-dimensional coordinates of an intermolecular 
potential V(rl) and r being the ordinary three-dimensional coordi- 
nates of a chemical concentration C(r). Similarly, t and t' may be in 
reference to different time scales arising, for example, on macro and 
micro levels. Thus the sensitivity coefficients can reveal the physical- 
chemical connections possibly occurring on vastly different length 
and time scales in Fig. 1. 

Although Eq. 1 indicates that this is a linear variational analysis, it 
is performed on the nominal full solution to the physical problem. 
This point is significant even in the simplest case of a physical 
problem described by linear equations (such as Schrodinger's equa- 
tion), where the output is still a highly complex nonlinear functional 
of the input parameters or potential. The functional dependence 
arises as a result of a mapping of the entire input function onto each 
point of the output. For problems where the parameters are 
constants (that is, independent of r '  and t ' )  the functional response 
embodied in Eq. 1 reduces to ordinary multivariable calculus 

where the parametric sensitivity coefficients are now aOi(r,t)/aaj and 
have an analogous meaning to those above. The sign and the 
magnitude of the sensitivity coefficients or densities as functions of 
position or time or both represent their information content. For 
example, if the output observable is a rate constant k and the input is 
a potential surface V(r) among the reacting particles, then 6k/6 V(r) 
is a function of the same coordinates r as the potential. Thus, a 
contour plot of Skis V(r) superimposed on V(r) would indicate the 
regions of significance in the potential for the particular rate 
constant. The sensitivity coefficients provide additional information 
that is not directly available from solving the model equations alone. 
Although each physiochen~ical problem has its own characteristics 
and resultant mathematical model, the equations that determine the 
sensitivity coefficients have a common structure. In general, chemi- 
cal-physical phenomena may be modeled by equations that have the 
following symbolic form 

where L,,, n = 1, 2, . . . , might correspond to the nth member of a 
set of nonlinear differential equations determining the vector of 
output O(r,t). Associated initial or boundary conditions or both 
would be needed to uniquely specie the model equations. The 
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sensitivity equations are obtained by taking the first variation of Eq. 
3, and, for the case of the parametric sensitivity coefficients entering 
into Eq. 2, the result is 

A similar equation may be found for the functional sensitivity 
coefficients in Eq. 1. 

The first task in executing a sensitivity analysis is to compute the 
sensitivity coefficients for a given problem. Codes for solving Eq. 4 
have been written for various applications in reactive flows (8), 
classical (9)  and quantum molecular dynamics (lo), spectroscopy 
( I I ) ,  and equilibrium molecular structure (12). The detailed algo- 
rithms are not described here, although the efficiency of such coding 
depends on how the original physical problem is set up and solved. 
Given the desire to obtain the valuable sensitivity information, it is 
important to keep in mind the method of setting up and solving the 
problem when one is approaching a new class of problems for 
computational coding. As an example, if the solution process for Eq. 
3 directly involves the computation of the system Jacobian matrix 
8L,,i80i, then there is an immediate computational savings in 
solving Eq. 4, as it also requires the Jacobian input. 

Sensitivity coefficients have been computed for a number of 
physical problems involving chemical phenomena, ranging from 
issues at the electronic structure level through collision dynamics up 
to macroscopic kinetics. Indeed, a critical question concerns how 
interactions or parameters at the most fundamental electronic or 
intermolecular level as well as intramolecular force field levels 
ultimately manifest themselves in the properties of bulk media. We 
are only at the beginnings of such an understanding now, but it is 
anticipated that at least in some prototypical problems this full 
mapping through sensitivity analysis will be carried out in the near 
future. In going from the left to the right in Fig. 1, a series of 
sequential problems are solved, which allow the output sensitivity at 
one stage to be used as the input sensitivity at the next stage. This 
process produces a chain rule extension of the relation in Eq. 1 
connecting the hierarchical flow. For example, consider the case 
where the observable of interest is a relaxation time T in a bulk 
gaseous medium characterized by a fixed temperature T. The 
medium consists of molecules interacting through an intermolecular 
potential V(r). A physically interesting question concerns the 
relation between T and V(r) giving rise to the relaxation process. 
Therefore, we have 

where kii(T) is the macroscopic rate constant connecting the ith and 
jth quantum levels of the system, and crij(E) is the co&esponding 
collision cross section at energy E. Equation 5 may b e  further 
simplified in that 

where P(E,T) is a Boltzmann velocity distribution function for 
the medium. The two remaining sensitivities, 8r/dkij(T) and 
Guij(E)/6V(r), may be separately computed by solving Eqs. 3 and 4, 
respectively, for the relaxation process and collision dynamics. 

This hierarchical chain relation ultimately allows for relating 
electronic structure to macroscopic properties. For example, it 
should be feasible to quantitatively assess how electronic orbitals 
"steer" reactants to their final product. A simple glimpse at what 
may arise is shown in Fig. 2 for the rotational inelastic collision of 
helium and hydrogen (13). Here, the two levels of observables 
involve collision cross sections and rate constants, with the latter 
quantities being a thermal average of the cross sections. In both 

cases, the desire is to understand the role of structure in the potential 
surface. The natural expectation is to see less structure in the 
sensitivity for higher level observables with respect to the input 
potential than for lower level observables. Although this response is 
confirmed in this case, an important question concerns whether this 
expectation may break down in other situations. A reasonable 
conjecture is that this might be the case for obsenrables that arise 
from quantum phase-interference phenomena. Even for systems that 
produce a gradual loss of information in going from one level to 
another in Fig. 1, the sensitivities provide a quantitative measure of 
this flow. A simple glance at the structure in Fig. 2 shows that the 
detailed relation defies intuition. Although in many cases a qualita- 
tive understanding of the overall sign or even magnitude of the 
sensitivities can be argued, invariably even the simplest problems 
have proved to contain interesting and unusual puzzles. For exam- 
ple, in Fig. 3 the sensitivity of the total integrated elastic cross 
section with respect to a purely repulsive model potential between 
two interacting atoms is shown (14). The surprise in Fig. 3 is the 
negative sensitivity region, which implies that making the potential 
more repulsive in some instances may make the cross section smaller. 
This is akin to stating, contrary to the common wisdom, that as the 
barn door becomes bigger, it becomes harder to hit. 

In addition to its application in quantum and classical molecular 
dynamics, chemical system sensitivity analysis has been carried out in 
various problems involving reactive flows where the input is at the 
level of parameters in a continuum model of kinetics and transport 
(7, 8). An example taken from a hydrogen-oxygen one-dimensional 
premixed laminar flame is shown in Fig. 4 (15). In this system, the 
kinetics are highly exothermic and additional feedback or coupling 
exists as a result of the presence of mass and thermal diffusion. 
Naturally, the model or physical mechanism in any reactive flow is 
set up such that each of the kinetic or transport parameters is at least 
thought to be independent. Similarly, the chemical species are 
certainly chosen for their completeness as distinct physical variables, 
barring conservation-of-mass constraints. 

Fig. 2. Fu~lctional re- 
sponse of the rotational 
inelastic cross section ao4 
(top) and rate constant 
kO4 (bottom) for the 
transition j = 0 -+ j' = 4 
of molecular hydrogen 
induced by impact with 
a helium atom. The sen- 
sitivities are with respect 
to the spherically sym- 
metric portion Vo(u) of 
the intermolecular po- 
tential. The cross section 
is evaluated at total ener- 
gy E = 0.346 eV, and 
the rate constant is eval- % I I 

uated at T = 500 K. 
The higher level rate 
constant observable 
draws on  less structure 
in the potential, as antic- 
ipated from the thermal 
averaging connecting 
thc two observables in 
Fig. 1. The dominant 
negative response in 
both cases indicates that 
an increase in the mainly repulsive, spherically symmetric interaction can 
cause a corresponding decrease in the cross section and rate constant. This 
result could be anticipated, but the detailed form of the sensitivity and 
especially the interference oscillations cannot be argued intuitively. [Adapted 
from (13) ,  with the permission of the Journal ofchemical Physics] 
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Fig. 3. The functional 
sensitivity Gu(E)lG V(r) 
(k' eV-') for a model 
system represented by a 
purely repulsive, spheri- 
cally symmetric interac- 
tion. At a given energy 
E, a cut through the sur- 
face is primarily a posi- 
tive function with resid- 
ual quantum oscillations. 
At sufficiently short 
range, the response sur- 
face goes to zero, corre- 
sponding to the state- 
ment that the deep, clas- 
sically forbidden region 
has a small effect on  the 
total elastic cross section. 
Given the repulsive nature of the reference potential, the negative trough 
apparent at short range is a surprise, implying that a further increase in the 
potential in this region would yield a decrease in the cross section. [Adapted 
from (14 ) ,  with the permission of Chemical Physics, copyright 19861 

The striking similarity of virtually all the sensitivity profiles in Fig. 
4 is unexpected. Such response has been seen in a number of 
combustion systems, all of which are characterized by high degrees 
of exothermicity and nonlinear feedback in the mathematical mod- 
els. Under these conditions, a type of system collapse may occur to 
produce what has been referred to as scaling and self-similarity 
relations (16). In the case corresponding to a model of the type in 
Fig. 4, these relations respectively take on the following form 

where uj is a characteristic constant labeled by an index associated 
with the jth parameter but in fact is dependent on all of the system 
parameters and is approximately independent of coordinate x. 
Although these relations have been argued to exist under reasonable 
conditions, their true physical origin has yet to be fully identified. 
The results are tantalizing because they suggest that seemingly 
complex problems with highly nonlinear coupling and feedback may 
in fact have a much simpler dynamical response structure. The 
possible generality of this result may have far-ranging significance, 
because it directly implies an ability to systematically lump or reduce 
the underlying models to an essentially simpler structure (see 
below). With regard to the role of sensitivity analysis in revealing 
this behavior, it should be noted that the chemical and thermal 
solution profiles do not exhibit any particularly unusual behavior as 
a function of spatial position or temporal evolution; it is only when 
the system is "disturbed" and its response is monitored through the 
parametric sensitivities that the underlying simplicity is revealed. 

Probing the relation between parameters and observable quanti- 
ties is not the only systems' issues of relevance in Fig. 1. For 
example, the relation among the dependent variables at any given 
level in Fig. 1 can be quite revealing. At a particular level, the 
physical model and its mathematical transcription provide coupling 
among the system-dependent variables. In the case of chemical 
kinetics, for example, such coupling may be thought of as a set of 
intertwined relations among all of the species including reactants, 
intermediates, and products. The actual chemical mechanism pre- 
scribed as input provides a kinematic picture of such coupling. 
However, the actual chemical evolution (presumably in the labora- 
tory as well as on the computer) can result in a highly different level 
of dynamic coupling. 

This dynamic coupling is especially important for strongly nonlin- 
ear problems in which there may be many multiple pathways 
between one species and another. Therefore, it is natural to inquire, 
for example, about the role of a given chemical species in producing 
some particular product. Questions such as this, as well as their 
exactly analogous form in other problems including that of quantum 
mechanics, can be addressed by computing a special class of 
sensitivity coefficients referred to as Green's function elements (7)  

Gin(r, t; r', t ' )  = GOi(r,t)/GJn(r', t ' )  (8) 

where J,(rl, t ') is the flux of the nth dependent variable introduced 
externally at r', t'. Therefore, the Green's function matrix element in 
Eq. 8 is the response of the ith dependent variable at r, t with respect 
to a disturbance in the flux of the nth dependent variable at rl,t'. 
These quantities are referred to as Green's functions because they 
satisfy an inhomogeneous linearized form of the original system 
equation driven by a delta h c t i o n  source term 

It is also straightforward to show from Eqs. 4 and 9 that all 
parametric sensitivities can be directly expressed in terms of the 
system Green's function 

In the case of probing quantum mechanical systems, the Green's 
function may also be identified as just the system matrix time 
evolution propagator (17). A plot of a Green's function matrix 
associated with a carbon monoxide laminar premixed flame is shown 
in Fig. 5 (18). Any response found in the region x' < x must be due 
to upstream thermal or mass diffision. 

Under the conditions associated with the presence of scaling and 
self-similarity response as illustrated in Fig. 4, similar behavior has 
also been found for the system Green's functions. Finally, if the 
system-dependent variables are laboratory observables such as bulk 
concentrations, then the Green's function matrix elements are a 
special class of sensitivity coefficients that may in principle be 
measured in the laboratory by introducing an infinitesimal flux 
corresponding to one variable and measuring the response of the 
others. This characteristic is particular to Green's function coeffi- 
cients, because normal sensitivity coefficients cannot be measured in 
the laboratory unless the parameters correspond to control variables. 
However, in general, the parameter sensitivities may be related to 
the measurable Green's function matrix through Eq. 10. Regardless 
of the possibility of direct measurement, the primary value of 
sensitivity coefficients is for analysis and understanding of physio- 
chemical models. 

Beyond the sensitivity coefficients discussed thus far, a large 
variety of derived sensitivity coefficients may be generated to deal 
with a number of special circumstances. For example, returning 
again to the Green's function elements, it is possible to calculate a 
reduced set addressing the question of the pathway of coupling 
between one dependent variable and another. A large Green's 
function element connecting two members does not in itself eluci- 
date the pathway by which they are connected. However, by 
appropriate application of system constraints, these important path- 
ways can be elucidated. In particular, by solving the original model 
equations as usual with all dependent variables being present and 
then striking out appropriate rows and columns from the Jacobian 
matrix dL,ldO,, one can solve Eq. 9 for elements of the reduced 
Green's function matrix whose dimension is reduced exactly by the 
same number of removed rows and columns from the Jacobian. 
These latter rows and columns are labeled by the dependent 
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variables that are suspected of being critical linkages on the depen- 
dent variable pathways. In executing this operation, it is important 
to understand that the suspected linking variables are still retained in 
the model; however, they are constrained to their nominal values 
and are forbidden to respond to any disturbances in the system. 

Another potentially important emerging application of sensitivity 
and derived sensitivity coefficients arises in the treatment of inverse 
problems. The sensitivity coefficients entering into Eqs. 1 and 2 
address the so-called forward problem, whereby response of an 
output is probed with respect to a disturbance of an input. On the 
other hand, when a measurement is performed in the laboratory, 
precisely the opposite circumstance is of concern because often one 
desires to extract the parameters from the body of measured data. In 
this case, Eq. 1 may be thought of as an integral equation to be used 
in an inversion algorithm. Formally, this corresponds to computing 
the inverse sensitivity coefficients 6uj(r',t1)16Oi(r,t), which provides 
a quantitative measure of how the ith observation projects back onto 
the jth system parameter. Implementing an inversion algorithm 
based on the sensitivities requires that considerable care be given to 
numerical details including stabilization (19). A related matter 
concerns the uniqueness of the models. This point can also be 
addressed by sensitivity coefficients that have the form 8uj(r1, t1)1 
6ui(r,t). All of these coefficients are obtained by exchanging mem- 
bers of the former dependent and independent variable sets. These 
transformations are exactly analogous to those familiar in multivaria- 
ble calculus, as routinely carried out by Legendre transformations in, 
for example, equilibrium thermodynamics (20). 

A host of other issues and applications have been considered by 
the computation of specialized sensitivity coefficients. Any physical- 
ly meaningful question concerning the interdependence of the 
dependent and independent variables of the chemical system may be 
addressed by appropriate sensitivity coefficients. Of course, address- 
ing a problem does not in itself provide an answer because the 
resultant coefficients must be physically interpreted. In general, 
sensitivity information can be used to identify the significant 
portions of a physical model, aid in a qualitative understanding of 
the model, provide a quantitative assessment of the relations among 
all the dependent and independent variables of the system, as well as 
guide prioritization of new measurements for updating parameters 
that are suspected of having significant uncertainty. 

Reduction 
The sensitivity analysis methods discussed above are aimed at 

analyzing a physical-chemical system for its significant content. One 
may view this process in an iterative fashion as an effort to build up a 
model in complete detail. At any level in Fig. 1 (and especially in 
moving toward more practical applications to the right in Fig. l ) ,  
one must recognize that highly complex models become quite 
impractical to routinely execute even on the largest computers now 
available or likely to be so in the foreseeable future. A cornerstone of 
good physics and chemistry has been to seek the simplest model 
acceptable for the stared purpose. The trick is finding such models. 
Reduced models of complex physical and chemical problems usually 
result from the application of physical insight or intuition or 
possibly from an identification of a small parameter for series 
expansion. Such approaches are certainly useful, but they leave much 
to be desired. For example, at the molecular scale of treating 
intramolecular dynamics, it is reasonable to expect that physical 
issues associated with a local region in a molecule could be 
understood in terms of a reduced model with "distant" regions 
lumped or left out of the model. But there are currently no truly 
acceptable means for identifying a reduced set of atomic coordinates 

and momenta to make computations practical and reliable. 
One of the earliest significant efforts at treating problems of this 

type arose in chemical engineering, especially in connection with the 
desire for simplified petrochemical refining models (21). Despite the 
generic nature of this problem in a variety of areas, it is surprising 
how little attention has been paid to the development of systematic 
model reduction or lumping techniques. The sensitivity techniques 
described above directly apply and have been used as such (22). That 
is, one may use the magnitude of the sensitivity coefficients to 
identify likely parameters or dependent variables for removal to 
produce a simplified model. Although this technique has proved 
successful in a number of cases, there is still considerable room for 
other, more direct techniques. For example, one may seek a 

Fig. 4. Temperature (a) and hydrogen atom concentration (b) sensitivity 
coefficients with respect to the mass diffusion coefficients D in a hydrogen- 
oxygen steady, prcmixed laminar flame, where x is the position in the flame 
relative to the cold inlet at x = 0. The label for each curve is the diffusion 
coefficient of a particular species. The strong kinetic, thermal, and diffusive 
coupling in this system produces the strikingly evident self-similarity be- 
tween the sensitivity behavior in both plots (except for that of DOH). The 
detailed behavior of these sensitivity profiles closely follows the approximate 
forms in Eqs. 6 and 7. [Adapted from ( I S ) ,  with the permission of 
Combustion Science and Technology, copyright 19881 
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Fig. 5. Sensitivity of carbon dioxide with respect to a disturbance of the flux 
of hydrogen G C o , , H 2 ( ~ , ~ ' ) .  This case corresponds to a steady, premixed 
laminar one-dimensional carbon monoxide flame model, where the presence 
of diffusion is clearly indicated by the response of carbon dioxide at position 
x upstream, x < x' in the flow. 

projective-type transformation 0' = MO in which the original n- 
vector of dependent variables 0 has been projected onto the vector 
0' of dimension n', where n' < n and M is a nonsquare lumping 
matrix of corresponding dimensions (23). Thus far, work along 
these lines has largely been confined to treating problems of reactive 
flow and particularly identifying the necessary and sufficient condi- 
tions for exact lumping to be present. Realistic problems are not 
likely to be amenable to exact lumping, but identification of such 
criteria can provide a benchmark and algorithmic guide to seeking 
approximate lumping techniques. Although some advances have 
been made and practical results achieved, this relatively undeveloped 
area deserves further attention. 

Concluding Remarks 
Serious mathematical modeling of chemical or other systems 

requires knowledge of the important variables and consequences of 
uncertainties in the particular model. However, at least until recently 
in the area of physiochemical system model development, this 
matter has not received major attention. It is certainly necessary to 
first have the ability to solve the model equations, and the apparent 
lack of attention mentioned above is probably due in part to an 
ongoing preoccupation with just getting "an answer." Sensitivity 
analysis does not come without extra cost, but, depending on how 
the model equations are solved, this cost can often be reduced to a 
reasonable level, as shown by the increasing number of illustrations 
in the literature. Indeed, if one can afford to perform the modeling, 
then the modeling alone should not be viewed as complete without 
a systems analysis. All too often, modeling stops at the point when 
the results "agree" with available experimental data. Data are never 
complete, and such premature truncations of effort can often miss 
the essential goal of a deep physical understanding of the system. 
Some workers have gone so far as to state that theoretical methods 
are now sufficiently advanced that it is intellectuallp dishonest to 
perform modeling without sensitivity analysis (24). 

Although sensitivity analysis forms the cornerstone of molecular 
systems analysis as it stands, the subject is emerging and may well 
take on other forms. For example, sensitivity analysis in its gradient- 
based form is inherently local and deals with the response or 

performance of a system at a particular operating point in parameter 
space. Ultimate questions of sensitivity and systems analysis of all 
types are embodied in the global structure of the parameter space. A 
full knowledge of the space would imply all knowledge about the 
system, and this will never be achieved nor is it desirable. Neverthe- 
less, a more global perspective would be most valuable and efforts 
along these lines in chemical systems go back a number of years (5, 
6) .  More recently, a new approach based on Lie group techniques 
has been pursued (25). 

In general, molecular systems analysis is not just a technique but 
rather a way of thinking about and treating physiochemical prob- 
lems. This mode of operation has guided the latest developments of 
molecular-scale systems analysis in the area of optimal control of 
molecular motion (26). The generic mathematical structure of 
systems analysis suggests that a breakthrough in treating systems 
questions in any one physical problem will have immediate applica- 
tions to others, which would make the effort extremely worthwhile 
and rewarding. In deciding to pursue molecular-scale systems 
analysis, an important question is: What can one expect from the 
investment of the additional time and cost? This question needs to 
be answered while keeping in mind that modeling will continue to 
be performed regardless of the incorporation of systems techniques. 
Computational modeling alone, notwithstanding its successes and 
considerable recent attention, has severe limitations. Quite simply, 
systems tools provide a means for extracting maximum benefit from 
such modeling efforts. Finally, there is also the question of what one 
may expect from a joining of modeling and systems analysis with 
experimental endeavors. There is a danger in overselling the capabil- 
ities of the current modeling-analysis tools, but it is reasonable to 
suggest that with these tools one should be able to short-circuit the 
traditional mix and try laboratory methods. This comment map be 
especially appropriate for materials design, where modeling is 
increasingly being used but systems techniques have pet to be used. 
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