
evoked consistent ocular following and, as 
Fig. 2A shows for one animal, once again 
the response varied inversely with the view- 
ing distance. The maximum compensatory 
eye speeds achieved within 100 i s  of thk 
onset of stimulus motion are plotted in Fig. 
2B, from which it is evident that OFR 
resDonses were a linear function of the in- 
verse of the viewing distance. Similar data 
were obtained from all four animals. When 
the data from each animal were expressed as 
a percentage of that same animal's highest 
mean response and plotted against the in- 
verse of the viewing distance, there was 
surprisingly little variation: the range of 
slopes was only 14% to 16% per diopter 
(mean, 15% per diopter), and the range of 
intercepts was 22% to 34% (mean, 28%). 

That the OFR shares the TVOR's depen- 
dence on proximity leads us to suggest that 
the two reflexes share a ~athwav whose 
efficacy is modulated by absolute distance 
cues (9). Further, we suggest that these two 
systems are synergistic, fhctioning to com- 
pensate selectivelv for translational distur- 
bances of the observer (10). In our proposed 
scheme (see Fig. 3), the TVOR and OFR 
share two gain elements: a variable one ., 
(kl/d, where k l  is a constant and d is the 
target distance), which gives the dependence 
on proximity, and a fixed one (k2), which 
accounts for the offset in our data. The 
variable gain element allows the TVOR to 
receive i n ~ u t s  encoded in Cartesian coordi- 
nates [translational velocity of the head 
(H, ) ]  and to respond with outputs coded in 
polar coordinates [rotational velocity of the 
eyes ( E ~ ) ] .  That the visual contribution 
enters the system upstream of the variable 
gain element might seem less than optimal 
since negative feedback systems such as this 
h c t i o n  best when their gain is fixed at 
some maximum limited only by stability 
considerations. However, we suggest that 
the variable element h e l ~ s  to offsz velocity 
saturation, which is known to be present in 
the OFR (2) and has been incorporated into 
Fig. 3. Retinal slip speeds experienced by 
the moving observer will tend to vary in- 
versely with viewing distance; hence ocular 
following will tend ;o show increasing satu- 
ration with near viewing, an effect that the 
gain element, klld, will counteract. Thus, the 
observed dependence on proximity meets 
the geometric needs of the TVOR and 
offsets the intrinsic limitations of the OFR. 
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Sequence-Specific Isotope Effects on the 
Cleavage of DNA by Bleomycin 

Bleomycin is a metal- and oxygen-dependent DNA cleaver. The chemistry of DNA 
damage has been proposed to involve rate-limiting abstraction of the 4'-hydrogen. A 
DNA fragment has been prepared that contains [4'-2H]thymidine residues of high 
isotopic content. Primary kinetic isotope effects have been directly observed at 
individual thymidine residues with DNA sequencing technology. 

T HE ELUCIDATION OF THE MECHA- 
nisms of DNA cleavage by bleomy- 
cin (BLM) ( I ) ,  the neocarzinostatin 

cofactor (2), calicheamicin (3) ,  esperamicin 
(4),  and related compounds (5 )  -has been 
extensively investigated. High sensitivity 
and precision are required to evaluate the 
mechanistic changes tha t  may accompany 
alterations in local DNA conformation or 
modifications in drug structure or both. We 
report a new technique that makes use of 
specifically deuteriated 3 2 ~  end-labeled 
DNAs in combination with gel electro- 
phoresis to detect and quantitate potential- 
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ly rate-limiting carbon-hydrogen bond 
cleavages by DNA-cleaving drugs at indi- 
vidual sequence sites. We use BLM as an 
example. 

The activity of BLM in vitro depends on 
Fe(I1) and 0 2  or Fe(II1) and H 2 0 2  (6). The 
initial BLM.Fe(II).02 complex (Fig. 1) un- 
dergoes one-electron reduction to ultimately 
yield "activated BLM," which can initiate 
DNA damage ( 7 ) .  Two types of DNA dam- 
age are observed with "activated BLLW' 
(Fig. 2, A and B). Pathway A results in the 
formation of nucleic acid base propenal and 
a DNA strand scission that yields 3'-phos- 
phoglpcolate and 5'-phosphate termini. 
Pathway B results in the liberation of nucleic 
acid base plus an alkali-labile site that cleaves 
at pH 12 with piperidine to afford a 3'- 
phosphate and a 5'-phosphate terminus. On 
the basis of the identification of the pro- 
penal (?, X), Giloni et al. (8) inferred that 
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this product was consistent with a 4'-C-H 
homolytic bond cleavage. The mechanism of 
release of nucleic acid base and of formation 
of alkali-labile sites remained obscure, al- 
though there was at least one suggestion 
that this pathway could be explained by a 
competing 1'-C-H cleavage (9). 

We proposed a unified mechanism for 
BLM action (Fig. 2) (1&14) based on our 
studies of BLM reaction with simple DNA 
polymers [such as poly(dA.dU)] tritiated at 
specific positions in the deoxyribose ring, 
which suggested that "activated BLM" ef- 
fected a 4'-C-H bond cleavage in B-form 
DNA that was subject to a surprisingly large 
tritium selection effect (kHlkT = 7 to 11). 
The putative 4'-radical intermediate could 
be intercepted by O2 (pathway A) or under- 

go a hydroxylation (pathway B). Modula- 
tion of the O2 concentration indeed changed 
the relative ratio of damage by both path- 
ways without a significant effect on the 
observed selection effect. 

Our proposal has not gone without criti- 
cism (15). Several factors limit the sensitivity 
of the approach. First, tritium is necessarily 
used as a tracer isotope, so that extensive 
DNA damage is required (upwards of 50%) 
for the accurate quantitation of tritiated 
products. Second, such large isotope effects 
can be subject to relatively large errors (1 1) 
and are global in nature without specific 
sequence information. Finally, the analysis 
of the chemistry at minor damage sites is 
hampered by the lack of sensitivity. We 
noted, however, that the tritium selection 

effect predicts a deuterium kinetic isotope 
effect of -4 to 5 (1 6) 

that could be detected at individual se- 
quence sites in a heterogeneous DNA under 
"one-hit" conditions. We prepared [4'- 
2~]thymidine 5'-triphosphate (dTTP) with 
high isotopic content (>95%) and assessed 
the relative damage at specific sites by elec- 
trophoretic separation and quantitation of 
the set of DNA fragments 5' end-labeled 
with 32P. The drug-limiting conditions of a 
DNA sequence analysis may be viewed as an 
initial velocity experiment. 

The chemical synthesis of [ 4 ' - Z ~ ] d ~ T P  
(>95% 'H) followed published procedures 
(17). The deuteriated nucleotide was incor- 
porated into the ( + )-strand of the Eco RI- 
Bam HI restriction fragment (375 bp) of 

Fig. 1. Proposed structure of the BLM.Fe-02 complex. 

? 4'-H RDS 
krJ%=7-11 
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Flg. 2. Proposed unified mechanism for the cleavage of DNA by "activated BLM" (1, 11-14). 

0- - 
0 - P - 0  

OR' 
5 

Flg. 3. Autoradiogram of a high-resolution dcna- 
turing polyacrylamide gel ofthe reaction of "acti- 
vated BLM" and the Eco RI-Bam HI pBR322 
fragment containing [4'-'HIT (lanes 1 and 3) or 
[4'-2H]T (lanes 2 and 4). Each reaction (80 4 )  
contained 10 mM Na2HP0,, pH 7.6, 10 mM p- 
rnercaptoethad, sonicated salmon sperm DNA 
(0.2 pg/pl), and -70,000 cpm of fragment 5' 
end-labeled with "P. The BLM-Fe(I1) (1 : 3) was 
freshly prepared and added to a final concentra- 
tion of 3.5 phf (-100 bp per BLM). Reactions 
were incubated for 10 min at 2 5 C  and terminat- 
ed by addition of 0.1 mM EDTA, 2.5M sodium 
acetate and salmon-sperm DNA (0.2 pg/pl) (100 
pl final volume). Samples were precipitated with 
ethanol and subjected to gel electrophoresis (23). 
Samples in lanes 1 and 3 received no alkali 
treaanent (pathway A, Fig. 2). Samples in lanes 2 
and 4 were treated with 1 M piperidine for 15 min 
at 90°C and repelleted before electrophoresis 
(pathways A and B, Fig. 2). 
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Fig. 4. h s i t o m e a y  scan of 3.0 
the autoradiogram in Fig. 3. 
Total strand damage of [4'- 
'H]T-containiig DNA 
fiagment (lane 2, light line) 
by "activated BLM" is com- $ 
pared to total strand damage E 
of [4'-2H]T-containing 
DNA fragment (lane 4, 3 
heavy line). The ratio of the 4 
integrated peak areas is a 
direct measure of the kinetic 
isotope effect at that posi- 
tion (L2/L4, Fig. 3). Similar 
scans were performed on o 
lanes 1 and 3 (LlL3, Fig. 
3). The scans shown are the 
raw data without normaliza- 
tion. 

pBR322 and then the 5' end of this strand 
was labeled with 3 2 ~  (18-21). The autora- 
diogram of the deavage pattern (22) result- 
ing fiom treatment of this fragment with 
limiting "activated BLM" is shown in Fig. 3. 
Identical experiments were performed on a 
control fragment containing no deuteriated 
nudeotide (lanes 1 and 2) and the deuteriat- 
ed fragment (lanes 3 and 4). In addition, 
control and labeled fragments were subject- 
ed to electrophoresis both without (lanes 1 
and 3) and with (lanes 2 and 4) alkali- 
piperidine treatment in order to assess the 
&errs of deuteriation on pathways A and B 
(Fig. 2) (23). 

The direct obse~ation of an isotope effect 
on 4'-C-H bond cleavage is demonstrated in 
Fig. 3, as is the known preference of BLM 
for cleavage at GC and GT sequences (1). 
The suppression of I~~P]DNA fragments 
resulting exclusively fiom damage at [4'- 
2 ~ ] ~  sites is strong evidence for the kinetic 
discrimination by "activated BLM." Since 
undeuteriated nicleotides such as C and A 
serve as internal controls, quantitation of the 
isotope effects may be performed by scan- 
ning densitometry of the autoradiogram 
(Fig. 4). The calculated isotope effects ex- 
hibit a range fiom -2 to 4.5 (Fig. 3). The 
differences in the magnitude of the effect at 
different sites is reproducible and suggests 
that local sequence variability may be impor- 
tant. Dissociation of the "activated BLM" 
from DNA must also be faster than bond 
deavage to permit discrimination h e e n  
labeled and unlabeled cleavage sites. 

The isotope effects on pathways A and B 
(Fig. 2) are essentially the same for a partic- 
ular damage site. The isotope effects on 
pathway A (LlL3; Fig. 3) were determined 
by quantitation of neutral strand scission, 
whereas those on pathways A plus B (L21 
L4, Fig. 3) were determined by quantitation 
of total alkali-induced scission. The effect on 
pathway B is similar to that on pathway A, 
which alKnns the partitioning of a common 
intermediate at individual damage sites. 

Flg. 5. Autoradiogram of a high-resolution dena- 
turing polyaaylamide gel of the reaction of esper- 
amicin Al with the pBR322 fragment con 
F1-'H]T (lane H) or [4'-'HIT (lane D)% 
reaction (25 pl) contained 50 mM ais-HCl, pH 
7.5, 0.1 mM EDTA, sonicated salmon sperm 
DNA (0.2 pglpl), and -164 000 cpm of a 
fragment 5' end-labeled with 3'P. Esperamicin 
Al (50 pM; 1 p1) was added and the solution was 
incubated at room temperature for 20 min. Di- 
thiothreitol (25 mM, 1 pl) was then added and 
the reaction was incubated at 37" for 10 min. The 
reaction was terminated by addition of 0.1 mh4 
EDTA, 2.5M sodium acetate and salmon sperm 
DNA (0.2 d p 1 )  (50 pl final volume). Samples 
were precipitated with ethanol and subjected to 
gel electrophoresis (23). 

Moreover, preliminary experiments varying 
the 02 concentration to alter the partition 
ratio corroborate this proposal. 
The isotope effects are dearly dependent 

on the nature of the DNA cleaver. Exoeri- 
ments performed with esperamicin Al (4) 
revealed, in addition to a substantially differ- 
ent sequence specificity, no significant iso- 

tope effect on 4'-C-H bond cleavage (Fig. 
5). While this result does not exclude this 
cleavage as a mode of action of esperamicin, 
it does rule out this step as a rate-determi- 
nant. The results, nevertheless, constitute a 
convincing control. 
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